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Based on a methodological analysis of the effective action approach, certain 
conceptual foundations of quantum field theory are reconsidered to establish a 
quest for an equation for the effective action. Relying on the functional integral 
formulation of Lagrangian quantum field theory, we propose a functional integral 
equation for the complete effective action which can be understood as a certain 
fixed-point condition. This is motivated by a critical attitude toward the distinction, 
artificial from an experimental point of view, between classical and effective 
action. While for free field theories nothing new is accomplished, for interacting 
theories the concept differs from the established paradigm. The analysis of this 
new concept concentrates on gauge field theories, treating QED as the prototype 
model. An approximative approach to the functional integral equation for the 
complete effective action of QED is exploited to obtain certain nonperturbative 
information about the quadratic kernels of the action. As a particular application 
the approximate calculation of the QED coupling constant a is explicitly studied. 
It is understood as one of the characteristics of a fixed point given as a solution 
of the functional integral equation proposed. Finally, within the present approach 
the vacuum energy problem is considered, as are possible implications for the 
concept of induced gravity. 

I. I N T R O D U C T I O N  

Physical reality can be approached by means of quantum field theory 
from different perspectives. This depends in particular on the kind of informa- 
tion one is interested in extracting in order to solve a problem under consider- 
ation. However, the line of attack is also influenced by one's view of the 
fundamental difficulties in standard quantum field theory (and its generalized 
concepts such as string theory). To a large extent, these different approaches 
reflect technical difficulties in fully understanding quantum field-theoretic 
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models (in particular, nonperturbatively) rather than real differences in con- 
cepts on a fundamental level. However, some of the pioneers of quantum 
field theory, such as Dirac (1978, 1983) and Feynman (1972, 1985), in 
particular pointing to the UV divergence problem, always maintained that 
the right theory had not yet been found. This attitude has apparently not 
received majority support, although in this respect there does not seem to 
exist any consensus] We believe this state of affairs justifies a reconsideration 
of certain conceptual foundations of quantum field theory. This is the purpose 
of the present paper. 

Notwithstanding the above problems, there seems to exist wide agree- 
ment that the scattering matrix can be considered as the fundamental object 
for describing a particular quantum field-theoretic model. The knowledge of 
the complete scattering matrix is considered equivalent to the solution of a 
quantum field theory and all interesting information, at least in principle, can 
be extracted from it. Construction of the scattering matrix can be attempted 
by different methods. For instance, the so-called S-matrix theory, as studied 
in the 1950s in reaction to the emergence of the divergence problem in 
Lagrangian quantum field theory, was designed to find the (finite) scattering 
matrix from rather general fundamental principles such as causality, unitarity, 
and Lorentz invariance, using dispersion techniques without making any 
reference to a Lagrangian underlying the theory (e.g., Brown et al., 1989; 
Eden et  al., 1966). Although quite general and interesting results have been 
obtained, the principles applied turned out not to be restrictive enough to 
completely fix the scattering matrix for realistic theories. Nowadays, after 
the successful reemergence of  (renormalizable) Lagrangian quantum field 
theory at the end of the 1960s, the description of the scattering matrix is 
supplied in a standard way in terms of the effective action of the theory 
considered (Slavnov and Faddeev, 1991). In this sense we may view the 
effective action as the genuine fundamental object of interest and will concen- 
trate on its study in this paper. 

Historically, beyond the S-matrix theory, attempts to cure UV diver- 
gences by nonlocal field theories have played a significant role since the 
emergence of the divergence problem in the 1930s [for a review including 
references see Efimov (1977, 1985); also see Efimov (1987)]. Although it 
was recognized early that nonlocal field theories may be accompanied by 
new, perhaps even more unpleasant difficulties, such as with unitarity and 
(macro-)cansality, theoretical thinking in this direction nonetheless continued. 
Most prominently, string theory, although much more ambitious, can be 
viewed as a particular way of giving preference to a special kind of nonlocality 

2 For a description of the attitude in one large part of the community see, e.g., Shirkov (1990), 
and for a more general account with emphasis on the historical development see Brown (1993). 
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(Eliezer and Woodard, 1989). In recent years, some papers have again dealt 
with nonlocal quantum gauge field theories (to mention only this subject) 
where in part the nonlocalities introduced are understood as regulators (Par- 
tovi, 1982; Ktorides and Mavromatos, 1985a,b; Karanikas et  al., 1986; Karani- 
kas and Ktorides, 1987; Evens et  al., 1991; Cornish, 1992; Kleppe and 
Woodard, 1992). Although having a different aim than dealing with UV 
divergences, the recently proposed average action concept (Ringwald and 
Wetterich, 1990; Wetterich, 1991), which is related to the Wilson renormaliza- 
tion group, should also be mentioned here. However, in principle, the draw- 
back of all these nonlocal approaches consists in the arbitrariness in the 
choice of the nonlocality introduced. So far no unique recipe starting from 
first principles has been proposed. 

The dominant paradigm in the field remains local renormalizable Lagran- 
gian quantum field theory (throughout the paper we will denote it by the 
term "standard quantum field theory"). However, nonlocality is also a well- 
known phenomenon in standard quantum field theory because it is a feature 
of the effective action that can he derived for any quantum field theory (either 
local or nonlocal) and which also serves (in most cases) as the generating 
functional of the one-particle-irreducible (1PI) Green functions. In general, 
the effective action is attributed different meanings by different authors. Some 
regard the effective action as some low-energy representation of a quantum 
field theory obtained by integrating out certain (massive) degrees of freedom 
(e.g., Georgi, 1993), while others consider the effective action as a fully 
fledged description of the model under investigation from which arbitrary 
S-matrix elements (related to any observation one might be able to perform) 
can be derived. We will adopt here the latter view. We take the pragmatic 
view that the effective action is that object which contains all the information 
ever to be measured under certain defined circumstances and there is no 
other (independent) object linking theory to physical reality. The shape of 
the effective action may of course depend on some of these circumstances 
(e.g., external conditions). A similar point of view has recently been described 
with respect to the gravitational effective action by Vilkovisky (1992). The 
effective action concept we have in mind aims at quantum field-theoretic 
models, especially those which are realistic like QED, and assumes that 
certain sectors of physical reality can be described in a consistent way indepen- 
dently of each other. It is therefore quite different from the TOE ('theory of 
everything') concept often related to superstring theory. 

In short, the program of the present article can be described by saying 
that we intend to find a concept which allows the determination of the 
structure of the (highly complex) observable 'effective action' without making 
reference to any other quantity not accessible to observation. In particular, 
the approach to quantum field theory will be based on a critical attitude 
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toward the distinction, artificial from an experimental point of view, between 
the so-called classical action and the effective action. This way we will be 
led to propose an equation for determining the (finite) effective action, which 
can be understood as a certain fixed-point condition. It will be an equation 
for functionals of fields (actions) and is therefore designed to remove the 
arbitrariness in the choice of the Lagrangian prescribed at the beginning of 
any field theory (to a certain extentmthe field content has to be prescribed 
as usual). However, this can only be expected to happen for interacting 
theories, where our approach differs from the established paradigm. For free 
field theories, where this is not the case, nothing new is accomplished in this 
respect. As a technical tool we rely on the functional integral formulation of 
Lagrangian quantum field theory, which seems to be the appropriate and most 
convenient language for the description of our concept. While nonlocality will 
be an inherent feature of our approach in most cases, it is by no means the 
conceptual starting point of the present investigation. Of course, the program 
as just sketched is an abstract one. However, once we have proposed the 
general concept it will simply serve us as a guide for finding an appropriate 
approximative approach to perform explicit calculations (in this article we 
consider QED as the prototype gauge field theory.). 

The outline of the article is as follows. In Section 2 we explain the 
general concept. First, a quest for an equation for the complete effective 
action is established and the further discussion then serves to suggest a 
particular answer by imposing a certain fixed-point condition in terms of a 
functional integral equation. Section 2 also discusses some features of this 
equation, among others the relation between standard quantum field theory 
and the present approach. Section 3 contains the major body of the explicit 
calculation. The model under investigation is QED in 4D Minkowski (Euclid- 
ean) space. Section 3.1 formulates the functional integral equation proposed 
in Section 2 for gauge field theories. The explicit calculation performed in 
the remainder of the section relies on an approximative approach. Section 
3.2 explains this approach to the functional integral equation for the complete 
effective action of QED which concentrates on the quadratic kernels of 
the fermion and gauge field actions. Section 3.3 then presents the explicit 
calculation. It is further split into several subsections. Section 3.3.1 contains 
technical details of the functional integration. While for the quadratic kernel 
of the gauge field action we rely on a certain Ansatz, Section 3.3.2 establishes 
an integral equation for the quadratic kernel of the fermion action. This 
integral equation is then approximately solved in Sections 3.3.2.1 and 3.3.2.2 
in the asymptotic UV and IR regions, respectively. This analysis yields certain 
nonperturbative information about the quadratic kernel of the fermion action. 
Finally, in Section 3.3.3, as a particular application of the present method, 
the approximate calculation of the QED coupling constant ot is explicitly 
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studied. It is understood as one of the characteristics of a fixed point given 
as a solution of the functional integral equation proposed. Section 4 closes 
with a discussion of some aspects of the results obtained and with certain 
observations concerning the vacuum energy problem in QED as well as 
related considerations concerning the relevance of the proposed approach to 
the concept of induced gravity. 

2. AN EQUATION FOR THE COMPLETE EFFECTIVE ACTION 

As an introductory step, let us begin by displaying key elements of the 
standard formulation of the effective action (Itzykson and Zuber, 1980). We 
consider Lagrangian quantum field theory in flat (Minkowski) space-time 
and in this section we use scalar field theory to pursue the discussion. It is 
understood that generalization to more complicated theories (in particular, 
gauge field theories) can be performed merely by standard means. Construc- 
tion starts with the generating functional of Green functions 

Z.[J,,]=CIDd~exp{iF,,_,[d~]+ifdxJ,,(x)ck(x) } (2.1) 

where F._t[~b] is the so-called classical action of the theory and C some 
fixed normalization constant. (For future purposes we have introduced here 
an index n. The conventional notation is obtained by setting n = 1 and 
dropping the index 1.) Then, the generating functional of the connected Green 
functions is 

W.[J.] = - i  In Z,,[J.] (2.2) 

The effective action F.[~.], which also is the generating functional of the one- 
particle-irreducible (1PI) Green functions, is obtained as the first Legendre 
transform of W,[J,], 

r . [$ . ]  = w.[J.] - I 

Here 

which in turn leads to 

dx J,,(x)d~.(x) (2.3) 

- 8 w . [ J . ]  
(2.4) 

~+--'.(x----~ = -J.(x) (2.5) 
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in analogy to the classical field equation for F._ ~[4]. Equivalently, using the 
above expressions, we can consider 

exp(iF,,[-~,,]) = C I Dd# exp{iF,,_~[dp + "~,,] + i l dx J,,(x)d~(x) ) (2.6) 

as the defining relation for the effective action, where the r.h.s, of the above 
equation has to be calculated using a current Jn(x) given by equation (2.5), 
which is a functional of ~b,. Therefore, as the r.h.s, is a functional of both 
J, and 6,, equations (2.5) and (2.6) have to be understood as functional 
integrodifferential equations for determining the (off-shell) effective action 
(giving an implicit definition only). Equation (2.1) defines a map gl: F~_ i[~b] 
---) Z~[J] from the class of functionals called classical actions to the class of 
functionals Z.. Furthermore, we have mappings g2: Zn[J] -") Wn[J] [equation 
(2.2), single-valued up to the fixing of the sheet of the Riemann surface, 
uninteresting for the present purpose] and g3: W.[J] ---) F.[~] [equation (2.3)]. 
These three maps together define a map g3 o g2 o g~ = f: F,_I[d~] --) F,[+] 
[equation (2.6)] from the set of so-called classical actions to the set of effective 
actions. In total, this map is unique up to the renormalization problem, which 
can always be treated in the present context by applying an appropriate 
regularization procedure for properly handling the divergences. Inasmuch as 
this map f is constructed explicitly, equation (2.6) is not a genuine equation 
with possibly a variety of solutions, but rather expresses the image F~ of 
F~_I with respect to the map f. Once the functional integral measure is 
constructed (and typically this is done for a whole class of classical actions 
and then fixed forever), the classical action F._~ uniquely determines the 
corresponding effective action F,. In other words, the effective action contains 
no more information than that (implicitly) encoded in the classical action 
(supplemented by the functional integral measure). The important point to 
notice here is that the effective action does not appear as an object in its 
own right, but as a derived quantity only. Basically, we prescribe an effective 
action in terms of some low-energy information rather than find it from 
independent (quantum) principles not exhausted by fixing the classical action. 
Mere reformulations of the calculational tools used to determine the effective 
action, like Schwinger-Dyson equations, do not change this feature. In the 
following these observations serve as a starting point for an attempt to find 
a modified view of quantum field theory based on the effective action concept, 
whereby justification for the discussion is derived from the still lasting contro- 
versy concerning certain conceptual foundations of quantum field theory 
mentioned in the introduction. 

Now, the above methodological insight concerning the standard construc- 
tion of the effective action may be confronted with the deductive idea often 
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applied in theoretical physics that the special case (here the classical action) 
should be derived from the more general one (here the effective action) and 
not the other way around. In this sense, the complete effective action is the 
genuine fundamental object to be studied. If, up to further investigation, one 
is willing to allow that the complete effective action might be an object in 
its own right, 3 then one has to find a method of determining the complete 
effective action differing from the established method. 4 There are not many 
methods available and to use an equation for determining the complete 
effective action seems to be an approach natural within theoretical physics. 
Therefore, the above view leads to the task of  finding such an equation for 
the complete effective action. To the best of the author's knowledge, such a 
question has not been raised in the literature. It should be emphasized that 
in view of the fundamental role of  the effective action in quantum field 
theory, it deserves to be answered. To give an answer is important independent 
of  the kind it eventually assumes. Even rejection of the question (e.g., by 
sticking closely to the established formalism) has significant methodological 
consequences. The search for an equation for the complete effective action 
needs to be ruled by certain principles. First, solutions of such an equation 
should be able to reproduce standard quantum field-theoretic results with the 
required accuracy in order to stay in line with experiment. Obviously, this 
does not leave much room for an answer different from the known one. 
Second, the formalism connected with such an equation should differ suffi- 
ciently from standard quantum field theory in order to be able to remove 
known problems, at least in part. Third, any sensible search for an equation 
for the complete effective action should take into account that the eventual 
result needs to be sufficiently general in order to be applicable to various 
situations and has to be restrictive enough at the same time in order to allow 
concrete information to be derived from it. Basically, there are two different 
routes to find the particular answer we prefer to the question put forward by 
proposing a specific equation for the complete effective action. One way is 
to discuss certain principles to be built in and then to write down an equation 
which embodies these. The other way, which we will choose, is heuristically 
to motivate an equation which then will be analyzed with respect to its 
conceptual content. 

Let us consider the mapf .  Fn-i[~]  ~ Fn[~b] mapping so-called classical 
actions to effective actions. Although it is not necessarily well defined for 

3Of course, any effective action has a certain classical limit, but coincidence of its classical 
limit with that of another effective action does not necessarily entail identity of both effective 
actions once this view is accepted. 

4Certainly, also such a different method which does not start with the classical action may, at 
the end, lead to the conclusion that classical actions and effective actions are related to each 
other one-to-one, but then this is a result of the method and not the starting point. 
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the domain of classical actions (which are local functionals in general), we 
will not change the map f itself, but instead we will now extend the domain 
of this map. For this purpose it suffices to mention that the set of so-called 
classical actions can be considered as a subset of the class of effective actions. 
From now on we understand the map f as a mapping of the set of effective 
actions into itself. On the basis of formulas (2.1)-(2.6) we can now define 
the mapffor the extended domain. These equations remain almost unchanged 
except that we replace the constant C in equations (2.1) and (2.6) by C 
exp(-  iFn_ l[0]). As in equation (2.1), C = C(IX) is some fixed dimensional 
normalization constant depending on an arbitrary mass parameter IX and 
compensating the dimension of the functional integral measure Dd~. Changes 
in Ix correspond to changes in the normalization of the vacuum energy 
connected with Fn[0]. In extending the domain of the mapfwe  introduce an 
additional normalization factor exp(-iF~_d0]). This is not a major point, 
but one worth appreciating from a conceptual point of view. Classical actions 
typically are normalized to obey Fn-l[0] = 0. Then, equation (2.6) tells us 
that F,[0] completely originates from vacuum fluctuations governed by the 
classical action F~_ i (up to some normalization of the vacuum energy fixed 
for a whole class of actions). By including the additional normalization factor, 
this principle is generalized to the map f acting in the extended domain and 
admits calculation of the vacuum energy as usual: 

Consider now iterations of the mapf  leading to some discrete series of 
effective actions 

f f f f 
" ' "  - '~  F n - 1  ~ Fn - - )  Fn+l ----> - "  

Obviously, the most interesting question one may ask with respect to the 
iterations of the mapfis  whether it has any fixed point. It should be expected 
that the fixed-point condition for the map f is not trivially fulfilled for any 
arbitrary action and should distinguish certain (complete) effective actions. 
Now, we propose that the fixed-point condition for the map f defined above 
yields the equation for the complete effective action we are seeking. The 
equation for the complete effective action which is equivalent to the fixed- 
point condition for the map f reads 

exp(iF[~l) = C exp(-iF[O]) 

• I Ddpexp{iF[dp +~l + i l dxJ(x)dp(x)} (2.7) 

s Having in mind standard quantum field theory, o f  course, here we refer to vacuum energy 
modifications under external conditions. 
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where 

J(x) = - ~F[qb]/~dp(x) (2.8) 

Equations (2.7) and (2.8) together define a genuine functional integrodifferen- 
tial equation for determining the complete (off-shell) effective action F of a 
quantum field theory. Of course, this equation needs to be supplemented by 
additional information to specify the particular conditions under which it 
should be solved. Accumulated experience in quantum field theory tells us 
that, in general, solutions of equation (2.7)--if  there are any at all--should 
be expected to be nonlocal and nonpolynomial functionals F of the field +. 
Optimistically, one might think that the above equation for the complete 
effective action is sufficiently restrictive in the case of interacting theories 
to enable us not only to find the structure of the effective action, but also to 
determine the dimensionless parameters it contains (e.g., coupling constants 
and mass ratios). Of course, the eventual range of theories to which it can 
be applied remains to be explored. However, it seems that at least any theory 
which cannot be understood as being induced by some more fundamental 
one should be subject to the concept of the complete effective action discussed 
above. Before we analyze equation (2.7) from the conceptual side, let us ask 
whether it has any solution at all. The answer is that any free field theory 
solves equation (2.7) (in saying so, of course, we neglect the vacuum energy 
problem). For free field theories the new approach proposed completely 
agrees with the standard formulation of quantum field theory. However, the 
former obviously differs from the latter for interacting theories. It remains 
to be seen whether there exists any interacting field theory which solves 
equation (2.7). 

The S-matrix which finally describes the results of physical measure- 
ments is just the S-matrix of that nonlocal and nonpolynomial field theory 
which turns out to be a solution of equation (2.7). Such requirements for the 
S-matrix, such as unitarity and causality, have to be studied for that particular 
field theory. However, those properties have been shown to hold for fairly 
large classes of nonlocal and nonpolynomial field theories (Efimov, 1977, 
1985; also see Alebastrov and Efimov, 1973, 1974; Efimov, 1975), providing 
ground for certain optimism in this respect. However, it remains to be seen 
in future explicit investigations whether form factors of the solutions of 
equation (2.7) belong to those function classes (certain entire analytic func- 
tions) for which unitarity and causality of the S-matrix has already been 
demonstrated. In Minkowski space solutions of equation (2.7) also should 
be expected to exhibit certain imaginary parts, which, however, do not in 
principle pose any problem with respect to unitarity and causality (Veltman, 
1963). Finally, beyond the functional integral approach on which our discus- 
sion is based, nonlocal and nonpolynomial field theories can equivalently 
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also be dealt with within operator quantization (Efimov, 1977, 1985), but it 
is technically much more involved and we feel that it is not well suited for 
our purposes. 

Now we study equation (2.7) with respect to its methodological content. 
The proposed equation for the complete effective action is exclusively 
expressed in terms of an observable (at least, in principle) quantity, namely 
the complete effective action, which should be finite, of course. This specifies 
the concept of renormalizable quantum field theory by relying on observable 
objects only (bare and dressed/renormalized quantities agree here). In this 
context one may wonder whether the conceptual distinction between classical 
action and effective action is really a productive one. Although any theoreti- 
cian may extract the classical limit from any solution of equation (2.7), one 
may justifiably ask what this tells an experimental physicist. In reality, vacuum 
fluctuations cannot be switched off (at best, they can be modified) and the 
experimentally relevant quantity is the effective action. Rather, the experimen- 
tal physicist is interested in the leading (low-energy, long-distance, low- 
intensity) terms of the derivative expansion of the effective action, but these 
do not necessarily coincide with what is called the classical action, although 
they will contain it in most cases. In view of our equation for the complete 
effective action, it is also of limited sense to ask which effective action term 
is induced and which is not, because equation (2.7) is a self-consistency 
condition. 

Continuing the above consideration, it should be mentioned that already 
in standard quantum field theory there is no difference in principle between 
a certain mode of vacuum fluctuations and macroscopic (external) fields. 
This is reflected in the insight that the effective action has a dual nature, 
namely, on one hand it is considered as the action governing the behavior 
of macroscopic (external) fields, and on the other hand it is the generating 
functional of 1PI Green functions playing a central role in describing vacuum 
fluctuations. In addition, any particular mode of vacuum fluctuations is acting 
in the background of all of them and merely experiences their total effective 
impact as described by the complete effective action. Therefore, the path 
integral construction should not rely on the classical action governing the 
weight of each path (mode) as is done in standard quantum field theory, but 
the weight of each path (mode) should be determined by the complete effective 
action expressing the vacuum properties in total. Of course, this involves a 
certain self-referentiality which finds its adequate formulation in terms of a 
genuine equation. In conclusion we may say that equation (2.7) is the theoreti- 
cal expression of the dual nature of the complete effective action being 
effective action and generating functional at the same time. In other words, 
vacuum fluctuations are governed by one and the same action, like macro- 
scopic phenomena. 
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Having obtained a certain insight into the principles embodied in the 
proposed equation for the complete effective action, let us turn in the following 
to methods for its solution. To expect any final answer would not be realistic; 
instead we discuss some aspects which come to mind immediately. Although 
there is no quick answer, one may ask whether the mapfhas  something like 
a contraction property in a certain neighborhood of a solution of equation 
(2.7). If this is the case, one could attempt its solution by iteration. With this 
in mind we will see how standard quantum field theory relates to the present 
formulation. The standard formulation of quantum field theory can be viewed 
as a first iteration of the map f starting from a certain low-energy (local) 
approximation (the so-called classical action) to the complete effective action. 
This can be considered as a natural starting point which is expected to be 
close to a fixed point of the map f for 'experimental' reasons. However, it 
is clear that in view of equation (2.7), even the 'complete' (assuming we 
had summed the usual perturbation theory) effective action of standard quan- 
tum field theory given by equation (2.6) is not the complete one in the sense 
of equation (2.7), but remains an approximation. The approximation method 
represented by standard local quantum field theory works reasonably well 
in lower spacetime dimensions, with considerable effort in four dimensions, 
but it becomes badly defined for most theories in higher dimensions. So, one 
may consider the properties of a theory with respect to renormalization as 
information about the possible quality of an approximate solution of equation 
(2.7) obtained from some local Ansatz by iteration of the mapf. Quantization 
of a classical theory can be understood as a method for approximately solving 
equation (2.7). However, simple extrapolation of the classical Lagrangian to 
arbitrarily high energies leads to the well-known UV divergences. 

For practical (i.e., calculational) purposes the mapf is  not a very conve- 
nient one. Instead one may use a somewhat simpler mapfwhich differs from 
f, but, as one may see easily from equation (2.7), has the same set of fixed 
points as f. This simpler map jx.. Fn-i ---> Fn is given by 

exp(iF,[dp]) = C exp(-ir~_ l[0]) 

• [ Ddp exp{iF,,_t[d~ + -~] + i l dx J,,_,(x)dp(x) } (2.9) 

The advantage of this formula is that it provides us with a compact and 
explicit representation of the f-image of F~_ ~. However, in general an image 
of this map f will not have the property of being a generating functional of 
1PI Green functions. 

In concluding this section, let us express our view that the proposed 
equation for the complete effective action embodies features which seem 
reasonable and interesting from a physical point of view and also offers a 
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guideline for a reevaluation of the established technical approach to quantum 
field theory and eventually its appropriate modification. From now on we 
simply will take equation (2.7) as granted and consider it as the starting point 
for further analysis. 

3. QED. AN APPROXIMATIVE APPROACH TO THE EQUATION 
FOR THE COMPLETE EFFECTIVE ACTION 

Among the numerous possible directions to explore the concept proposed 
in the preceding section, the investigation of QED in 4D seems to be the 
most interesting and important one. On one hand, QED is the theory where 
new theoretical ideas can be confronted with experiment (i.e., physical reality) 
most easily, and on the other hand, as the prototype gauge field theory, it 
tests the ability to deal with certain technical difficulties not met in scalar 
model field theories, for example. To study QED we will therefore begin 
this section with a formulation of the functional integral equation for the 
complete effective action in gauge field theories supplemented by a discussion 
of certain special features relevant to this class of theories. Besides structural 
investigation of the equation for the complete effective action, the question 
of most interest appears to be whether the proposed approach will enable us 
to extract concrete information which is not at all, or not easily, obtainable 
by established standard methods. The aim of this section is to demonstrate 
that the present approach indeed allows us explicitly to find certain informa- 
tion about the complete effective action of QED, which, in addition, can be 
seen to be of a nonperturbative nature. Of course, the concrete study of the 
equation for the complete effective action of QED cannot be expected to be 
rigorous for the time being. It will be necessary to apply an approximation, 
which, however, in certain respects should circumvent some of the problems 
appearing in standard quantum field theory. In particular, as far as is possible, 
we will take care that no inappropriate approximation giving rise to UV 
divergences is introduced. Although most of the approximations we will 
exploit in the explicit calculations of this section can be expected to be 
reasonable for small values of the QED coupling constant or, the explicit 
calculation we will undertake has to be understood in the first place as a 
model game to test in principle the calculational accessibility of the concept 
proposed. As a particular application of the new concept, we will explicitly 
study how to determine the coupling constant ot (i.e., the theoretical value 
of the fine structure constant), understood as one of the characteristics of a 
fixed point of the map f. This is done using certain simple approximations 
(capable of future improvement), which at the end, however, will turn out 
somewhat too simple to succeed numerically. 
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3.1. The Functional Integral Equation for Gauge Field Theories 

In this subsection we study the equation for the complete effective action 
proposed in Section 2 in the case of gauge field theories. Although we will 
have in mind gauge field theories in general, here we restrict ourselves to 
QED and only comment on the case of non-Abelian gauge theories. In doing 
so it is understood that the Faddeev-Popov procedure used in standard 
quantum field theory for defining the functional integral measure can be 
applied in a slightly generalized way also in the present context, in particular, 
taking into account that, in general, solutions of equation (2.7) are nonlocal 
and the gauge condition to be chosen will be, for convenience, likewise 
nonlocal. 

We start by defining the generalized map f for QED. The generating 
functional Z of the Green functions is 

zn[J,,, %,, "n~] 

= C exp(-iFn-l[0,  0, 0]) 

I D[a~] Dd~ D~ exp(iFn_l[a, d~, • 

X exp{iF~[a] 

+ i f d'x [Jno.(x)a~(x) + ~,,(x)*(x) + ~(X)Xln(X)] } (3.1) 

where 

1 f d4y (F[a; y])2 (3.2) 
Fg[a] = 2h 3 

F[a; y] = f d4x n~(y - x)a~'(x) (3.3) 

As usual, F~ is a gauge-breaking term containing a linear, homogeneous 
functional F of a~ (for the moment n~ is any arbitrary but appropriately 
chosen vector-valued distribution) and the brackets in D[%] in equation (3.1) 
indicate that the Faddeev-Popov determinant has to be taken into account. 6 

6It is an almost trivial factor for Minkowski space QED, but already at finite temperature it 
becomes important. In addition, always having in mind possible generalization to non-Abelian 
gauge theories, it serves as a reminder for this complication then to be considered. 
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Here F._~ belongs to the class of gauge-invariant effective actions. Then, 
the W-functional is given by 

Wn[Jn, ~q"--~, "tl,~] = - i  In Z,,[J,,, ~"-~, ~qn] (3.4) 

and the image of F._ ~ is 

F.[A., ~ . ,  qT] 

= Wn[J., ~,,, "q,~] 

- f d4x [Jn~(x)A~(x) + ~,,(x)~,,(x) + xlt---~(x)~l.(x)] (3.5) 

Again, we have the relations 

~W~[J., ~., "qd ~F.[A., xtt., ~ . ]  
Ariz.(x) = ~J~(x) ' ~A~(x) = -J.~(x) (3.6) 

~W~[J~, ~., - q . ]  ~F.[A.. 'tit., qT] 
�9 .(x) = , = ~.(x) (3.7) 

~ . (x )  ~ . ( x )  

_xIt(x ) = ~W,,[J,,, ~., " q . ]  8F.[A., ~ . ,  ~.1 = -'q.(x) (3.8) 
~'q.(x) ' ~ . ( x )  

Now, performing shifts in the integration variables, we find 

exp(iF.[A., ~ . ,  ~.])  

= C exp(-iF._l[0,  O, 0]) 

X I D[a~] DO D~ exp(iF._~[a + A., ~ + ~ . ,  ~ + ~ . ] )  

X exp{iF~[a + A.] 

+ i I d4x [J"~(x)a~(x) + ~.(x) , (x)  + ~(x)'q,,(x)]} (3.9) 

describing the map f from the gauge-invariant effective action F._~ to its 
image F.. From the discussion leading to the background field method in 
gauge field theories we know that F. is in general not gauge invariant because, 
as one easily recognizes from equation (3.9), the shift in the gauge field 
integration interferes with the gauge-fixing term for the quantum fluctuations. 
This is remedied in standard quantum field theory by starting in equation 
(3.1) with a modified gauge-fixing term Fgr[a - A] and fixing the field A~, 
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to obey A~ = An~ (cf. Abbott, 1981, and references therein). However, in 
our approach the application of this procedure would entail that the map f 
(in particular, the gauge condition for the quantum fluctuations) had to be 
modified in each iteration step depending on the actual shape (gauge) of An,, 
i.e., of F[A~ - A; y]. While in standard quantum field theory A,~ can be 
understood as some fixed background field (essentially, this makes the back- 
ground field method acceptable), our situation is worse in this respect because 
A~ also contains pieces of arbitrary vacuum fluctuations to be integrated 
over later. There is only one safe way to ensure that the gauge for A~ and 
that for the vacuum fluctuations a~ do not interfere in a gauge-dependent 
way (i.e., that the shift in the argument of the gauge field integration does 
not interfere with the gauge-fixing term), namely one has to choose for An~ 
the gauge 

F[A,; y] = 0 (3.10) 

If An~ is a sum of independent pieces, condition (3.10) applies to each 
component because F is linear and homogeneous. Now, as already mentioned, 
in general, A~ contains pieces of vacuum fluctuations to be integrated over 
in further iterations; consequently, we have to impose condition (3.10) also 
on these vacuum fluctuations. This argument of course applies to each iteration 
step of the map f and therefore the only consistent gauge is the generalized 
Landau gauge k = 0. So a 'sharp' gauge has to be imposed on all gauge 
fields, on external fields as well as on vacuum fluctuations, i.e., the whole 
system of functional relations is bound to one definite gauge. Of course, the 
gauge functional F can be chosen as convenience may require and the full 
gauge-invariant effective action F~ consequently is obtained by letting F vary. 

At this point it seems appropriate to mention that in the past decade the 
effective action concept has received interest from the point of view of its 
invariant geometrical formulation. This is an important step in ensuring the 
physical relevance of the effective action because its physical consequences 
should not depend on the particular choice of coordinates for the field vari- 
ables. Initial work in this direction traces back to Vilkovisky (1984a, b) and 
DeWitt (1987). For a recent discussion of the geometrical effective action 
see Camblong and Ord6fiez (1992) and for a review including further refer- 
ences see Buchbinder et al. (1992). For the purpose of the present article (to 
reduce the complexity of the considerations) we simply have bypassed the 
subject so far (implicitly) maintaining that always those field coordinates are 
applied in terms of which the formalism takes its naive (nongeometrical) 
shape. For gauge field theories, a main concern of the unique (geometrical) 
effective action concept, we have seen above that the generalized Landau 
gauge is the only sensible gauge. Inasmuch as for gauge field theories the 
geometrical effective action has been found to agree with the naive one 
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(calculated by means of the standard background field method) exactly for 
generalized Landau gauge, we can feel free to ignore the subject also in this 
context (Fradkin and Tseytlin, 1984; Rebhan, 1987; Nachbagauer et al., 1989). 

From equation (3.9) we now read off the equation for the complete 
(gauge-invariant) effective action of QED, 

exp(iF[A, ~ ,  qT]) 

= C exp(-iF[0, 0, 0]) 

• f D[a~] D~ D~ exp(iF[a + A, ~J + xI t, ~ + ~:]) 

• exp{iFgr[a] 

+ i J dax [Jr162 + ~(x)O(x) + ~(x)xl(x)]} (3.11) 

F[A; y] =0, h ~ O 
In any explicit calculation we will always leave the gauge parameter h unfixed 
because this allows us to keep better track of the terms involved, and in the 
final results one may simply set h = 0 to find the correct answer. 

Finally, let us mention that Ward-Takahashi identities can be studied 
within the present formulation of QED, which, however, retain their standard 
shape (Scharnhorst, 1993, Section 3.1). Furthermore, one may convince one- 
self that also in non-Abelian gauge field theories the derivation of generalized 
Ward identities [i.e., Slavnov-Taylor identities (Slavnov and Faddeev, 1991, 
Section IV.7] remains unchanged and they also hold at each step of any 
iteration of the map f. Violation of these (generalized) Ward identities (e.g., 
if anomalies occur) means that the equation for the complete effective action 
of such a theory will not have any solution. To see this, note that the existence 
of an anomaly would entail that the image F, = f(Fn-l) of an action has a 
different behavior than its counterimage l-'n_ i, blocking any attempt to solve 
the equation. In this sense, the well-known model-building requirement of 
anomaly cancellation (e.g., Ryder, 1985, Section 9.10) can be understood as 
a solvability condition for the functional integral equation for the complete 
effective action of a theory under consideration. 7 

3.2. The Approximative Approach 

After having established in the preceding section the equation for the 
complete effective action in QED, we now investigate it by means of some 

7Of course, as in standard quantum field theory, this concerns only dynamical fields. 
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rough approximation, which, however, is a straightforward generalization of 
standard QED. The approximative approach is as follows. We study one 
iteration of the map f starting from a certain Ansatz F~ which is mapped by 
means o f f  to its image FH. The gauge-invariant Ansatz for F~ is chosen as 
a natural generalization of the so-called classical action Fo (to obtain this 
replace d~, al, b~ by delta functions in the equations below), which is the 

standard QED perturbation theory, starting point for 

FI[A, ~ ,  ~1 = F~[A] + Ff[A, ~ ,  ~ l  (3.12) 

if ria[A] = ~ d4x d4x  , A~.(x) 

x [go.,, ~ - xO~ xO,,] dt(x - x ' )  A"(x ' )  (3.13) 

I [ f  ] F~[A, ~ ,  ~ ]  = d4x d4x ' ~ ( x )  exp ie dy~ A ~ ( y )  
X 

• [ai(x - x ' ) ( i  ~ ,  - eA(x ' ) )  - mbl(x  -- x ' ) ]~(x ' )  (3.14) 

m is the electron mass, dl, at, and bl are functions (distributions) that are 
arbitrary for the moment, and the gauge functional F appearing in equation 
(3.9) is to be chosen later in a way appropriate and convenient for the explicit 
calculation. 8 Furthermore, the line integration in the phase factor in equation 
(3.14) is unders t~d  to be performed along a straight line connecting starting 
and endpoints. Equation (3.14) is written in such a form as to keep contact 
with standard QED (~I = / ~  -- 1) as closely as possible. Finally, the equation 
for the complete effective action (3.11) will be taken into account in such a 
way that we require at the end d t =  dti, al = an, /~ = /~i, at least in some 
approximation. All new structures of Ftt not appearing in the Ansatz F~ will 
be viewed as induced ones within this approximation and remain beyond the 
scope of  present interest. 

It should be mentioned that an Ansatz similar to equation (3.14) (with 
at = b0 was unsuccessfully explored earlier within the framework of nonlocal 
QED by Chr6tien and Peierls (1954) (see also Peierls, 1954, 1991). For a 
discussion and an explanation of  the failure of the attempt see Scharnhorst 

Sin general, we will alternatively write l(x) o r  l(r), r = - m 2 x  2, for one and the same function, 
which, however, will not lead to any confusion in the context used. [All functions l(x) we 
study depend on x via x 2 only. l stands here for d, a, b.] Fourier transforms are defined for 
l(x) by 

l(x) = e~P~[(p) 

and equivalently we use the notation i(p) and/(s), s = -p2/m2, for one and the same function. 
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(1995). With reference to Chr6tien and Peierls (1954), the action (3.14) has 
also recently been studied in a different context (effective Lagrangians in 
nuclear theory) than ours (Ohta, 1990; Bos et al., 1991; Terning, 1991). 

Having spelled out our general kind of approximative approach, we 
need now to translate it into operational terms which are fundamental to the 
explicit calculation we are aiming at. So far, dl, al, and bl are understood as 
completely arbitrary and clearly it is difficult to perform an explicit calculation 
based on such a general Ansatz. Therefore, below first we will discuss whether 
the most general Ansatz for dr, at, and bl can sensibly be restricted to a 
certain subclass in which the final solution can be sought. Of particular 
interest is whether these distributions can adequately be modeled by means 
of local operators. Let us start with the consideration of a~, b~ characterizing 
the fermion action F~. 

One of the crucial solvability conditions of equation (3.11) is that the 
map f should not violate gauge invariance. This in particular entails that the 
map f must not induce any mass term for the gauge field A w Even a finite 
nonvanishing coefficient of such a mass term is not allowed, not to mention 
infinite ones, which are pushed aside in standard QED by applying a gauge- 
invariant regularization. Inasmuch as here we are aiming at finite solutions 
of the equation for the complete effective action (i.e., some approximation 
to it) even in a gauge-noninvariant regularization scheme (like cutoff regular- 
ization), mass terms should not survive after lifting the regularization. An 
analysis within cutoffregularization of the mass term induced by the fermionic 
part of the functional integral yields the following conditions from the require- 
ment that the induced mass term should vanish when removing the cutoff 
[cf. Scharnhorst (1995), equations (3.7), (3.8); s = -pZlm2]: 

at(s)  ~ O ( s O  

$ ---r 

/~(s) - const + O(sK), const 4: O, K < - 1  

(3.15) 

(3.16) 

From these relations one recognizes that al and/~l should behave differently 
for s --) oo, i.e., they cannot be identical. This requirement is in line with 
results for the fermion self-energy calculated in lowest order of standard 
QED perturbation theory, where a and/~ already differ (e.g., Itzykson and 
Zuber, 1980). Although (3.15), (3.16) provide us with certain expectations 
for the UV behavior of a~ and b~, this result does not seem to improve 
our situation. Even worse, it indicates that at and br cannot adequately be 
approximated by any local operator Ansatz because it would exhibit an 
unacceptable UV behavior. So we conclude that for the moment al and bt 
should indeed be kept arbitrary and the hope for simplifying our Ansatz is 
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exclusively placed on the kernel of the gauge field action FIG, which we will 
discuss now. 

The first requirement [Section 3.3.1, equation (3.33)] is that we expect 
the (time-integrated) self-energy 

- -  ~ t .  _ _  t - -  t ,  1 d4y day ' 3~(x, x ,  y ) D ~ ' ( y  y )Y,(x, x ,  y ' )  (3.17) 
2 J 

(Dt" is the photon propagator derived from the action FIG + Fgf) of a charged 
point particle represented by the current 

J~(x, x ; y)  = e d'r ~g(4)(z(~) - y) (3.18) 

Z~('r) = (x' -- x),a" + x ,  

and propagating over a finite time interval to be finite. This is needed in 
order to properly define the mapf. The above requirement yields the condition 

di(s) ~ O(s~), K > 1/2 (3.19) 

Taking condition (3.19) into account is sufficient for most of the explicit 
calculation we are attempting. However, it turns out that in finally imposing 
our approximation to the fixed-point condition for the mapfand then searching 
for a solution, we need to consider further requirements in order to find one. 9 
Specifically, a solution correct in the asymptotic UV region can only be 
found if the photon propagator D~'(x) is finite in the coincidence limit x ---> 
0. This entails for the kernel of the gauge field action the stronger requirement 

$...-)oo 

~l~(s) ~ O(sK), K > 1 (3.20) 

We see that dt characterizing the kernel of  the gauge field action should 
behave qualitatively quite differently than do a~ and b~ defining the kernel 
of the fermion action. Conditions (3.19), (3.20) induce justified hope that dx 
can indeed be modeled by a local operator. Inasmuch as to respect condition 
(3.19) is sufficient for most of the further explicit calculation (i.e., in particular 
for the analysis of  the asymptotic IR region), we choose the Ansatz 

where 13 is an arbitrary real (positive) constant parametrizing the Ansatz. l~ 

9More precisely, this concerns the integral equation for the kernel of the fermion action to be 
studied further below (Section 3.3.2.1). 

t~ have immediately normalized the first term to 1, freezing the arbitrariness against (finite) 
gauge field renormalizations that the formalism admits. 
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The analysis of the asymptotic IR region will be merely independent of 
further terms to be introduced in (3.21) to satisfy (3.20) and therefore they 
are ignored in the present Ansatz for calculation simplicity. Of course, the 
Ansatz introduces an additional (spurious) pole at p2 = 13- ~m 2 in the momen- 
tum-space photon propagator representation. However, we will not be worried 
by this fact, because we simply see equation (3.21) as a model representation 
of an unknown and possibly complicated kernel of the gauge field action, 
and so it cannot be expected to be free of perhaps unpleasant properties in 
any respect. Also, equation (3.21) can be understood as some low-energy 
(i.e., IR) approximation that, however, can safely be extended to arbitrarily 
high energies without severely misrepresenting the required true UV behavior. 
For a discussion of some features and drawbacks of the particular model 
Ansatz (3.21) see Pals and Uhlenbeck (1950), Barcelos-Neto et al. (1991), 
and references therein. The analysis of the asymptotic UV region will not 
demand any further explicit knowledge of the photon propagator beyond 
condition (3.20), so that the Ansatz (3.21) can be used for most of the further 
calculation (which focuses on the IR analysis) and does not need to be 
supplemented by any specific UV Ansatz. 

We are prepared now to define in some detail the approximation strategy 
to be followed in the explicit calculation. In order to reduce the calculational 
complexity, we will use the mapf( i .e . ,  source terms are given by I'i and not 
by Fu) instead of the map f. In practice, f will be slightly modified still 
further, as we will explain in Section 3.3.1. The local operator Ansatz (3.21) 
for the kernel of the gauge field action admits the following procedure for 
applying the mapf.  First, starting from FI with equation (3.21) inserted, we 
will perform the functional integration over the gauge potentials. This can 
be done exactly, independent of the Ansatz (3.21). Then, we perform the 
integration over the fermion fields, and consequently we impose the fixed- 
point approximation al = au, b~ = bn. These integral equations have to be 
solved. In practice, solution of these coupled integral equations can be 
attempted in a certain approximation only. Specifically, we will explicitly 
solve them in the asymptotic UV region and in the asymptotic IR region, 
respectively. Solutions a, b of these integral equations are still parametrized 
by ct (or = e2/4a'r), H while we find that the parameter 13 (of the kernel of the 
gauge field action) has to be considered as a function of ct in order to find 
any consistent solution at all. However, we have yet to impose the third 
condition dt = dH. 

~ Let us assume that there is an unique solution a, b only, which is supported by the explicit 
calculation to be discussed below. 
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The fermionic integration finally has induced a contribution AF G to the 
gauge field action as follows12: 

o; [ ] 
AI-'IG[A] = ~ d4x A)~(x)[g)j a - (9),0~] C~a + C2~ - ~  + " "  A~(x) 

(3.22) 

Cla, C2~ are functionals of the distributions a and b. Therefore, they can also 
be viewed as certain functions of ct and of the parameter 13(ct). For the 
moment let us vary the parameter 13 independently of or, although we believe 
that the necessity to consider the parameter 13 as a function of et in the course 
of solving the integral equation for the quadratic kernel of the fermion action 
is not bound to the particular method we will apply. The condition dl = dn 
then reads 

Cla(Ot, 13) : 0 (3.23) 

C2a(Ot, 13) = 0 (3.24) 

and both these equations define an implicit function or(13) [or 13(or)I, i.e., 
certain curves in the or, 13 plane. The crossing points of these curves correspond 
to the set of allowed values (et, 13). The functional Cla has been explicitly 
calculated (Scharnhorst, 1995) with considerable effort in one-loop approxi- 
mation only (i.e., taking into account the quadratic kernel of the fermion 
action in the presence of an arbitrary gauge potential). To determine C2a in 
one-loop approximation along the same lines is a trivial but extremely labori- 
ous task reserved for the future. However, if, as mentioned, the parameter 13 
has to be viewed as a function of ot in advance of imposing dl = dH, equations 
(3.23) and (3.24) cannot be satisfied simultaneously anyway (to expect that 
they are degenerate seems not to be very realistic). Requiring that at least in 
the asymptotic IR (long-distance, long-wavelength) region the fixed-point 
condition should be fulfilled, we choose equation (3.23) as the condition to 
be respected. So, in principle the equation 

C~a(ot, 13(o0) = 0 (3.25) 

allows us to determine the QED coupling constant ct within the present 
approximative approach. It is clear that the above method can easily be 
accommodated to the inclusion of additional terms in the Ansatz (3.21). 

We are now equipped with a plan for the explicit calculations, and will 
proceed along the lines just discussed. 

12Gauge-noninvariant structures do not occur because the solutions a and b exhibit a UV 
behavior, as will be shown, preventing those from occurring even in a gauge-noninvariant 
regularization (at removing the cutoff). 
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3 .3 .  E x p l i c i t  C a l c u l a t i o n  

3.3.1. Performing the Functional Integration 

According to our approximation strategy, first we have to calculate the 
functional integral [cf. equations (2.9), (3.9)] 

exp(iFn[A, xlt, ~17]) 

= C f D[aJ Dt~ D~ exp(iFi[a + A, ~ + ~ ,  ~ + ~1) 

X exp{iF~[aJ 

+ i I d4x [J~(x)ar + ~I(X)I~(X) + ~(x)'ql(X)]) (3.26) 

with 

~I-'I[A, q', ~1 
aA~(x) 

~Fi[A, XIt,~l 7] _ 

8xt,(x) 
BFI[A, xIr,~i 7] 

m 

8'I'(x) 

Jxr (3.27) 

~i(x) (3.28) 

vii(x) (3.29) 

inserted. In calculating Jt~, we may neglect the term stemming from F~ 
because in Fn it gives rise to fermion interactions only) 3 Furthermore, by 
using a partial integration, we rewrite equation (3.14) in the following manner 
[for the definition of  J see equation (3.18)1: 

FF[A, ~, ~] = I d4x d4x' ~(x) exp[i l d4y J~(x,x'; y)A~(y) ] 

• [i dxat(x - x') - mbt(x - x')]atr(x ') (3.30) 

This will allow us to represent the result of  the gauge field integration, which 
is to be performed first, in a very convenient way. To perform the gauge 

~3Incidentally, it should be noted that reasoning leading to this fact also makes use of Furry's 
theorem (i.e., an appropriate generalization of it) which applies to our situation. It excludes 
a closed fermion loop tadpole contribution. 
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field integration, we temporarily expand the term exp(iF~) in equation (3.26) 
in a power series, 

exp(iFi F) = 1 + i r f -  �89 + . . .  (3.31) 

which is a very natural procedure in view of the Grassmann integration. It 
turns out that the result of the gauge field integration can be given as an 
infinite sum of Gaussian integrals. Each term of this sum corresponds to a 
certain power n of F F and contains the expression 

Y ( ,. } D[a~] exp iF~[a] + iFe[a] + i d4y J~(xk, Xk, y)a~(y)  (3.32) 
k= l  

where the arguments {xk, x~} refer to the integration variables in the kth copy 
of F~. Performing the Gaussian integration, we find that (3.32) reads 

C exp - d4y d4y ' J~(xk, Xk, y ) D ~ ( y  - y )Jv(xl, Xl; y ) (3.33) 
I= l  

Terms with k = l are self-energy contributions, while off-diagonal terms of 
the double sum in the exponent generate fermion interactions. We see that 
the requirement (3.19) arises naturally in the course of the functional integra- 
tion. We define the following function from the self-energy term: 

g(x - x') = exp - d4y d4y ' J~(x, x '  ; y ) D ~ ( y  - ' - y )J~(x, x ' ;  y ' )  (3.34) 

g can be calculated explicitly, and for the Ansatz (3.21) this is done in 
Appendix A. Using g, we introduce the new functions alg, bxg by defining a 
map g: a ~ ag, b ~ bg specified by the prescriptions 

ai'g(x) = g(x)a~ (x) (3.35) 

b~g(x) = g(x)b i (x)  (3.36) 

Here we use the notation a ' ( x )  = (d/dr)a(r) ,  r = -m2x 2. The uncertainty in 
a~g due to the free integration constant is removed by noting that g(0) = 1 
[this follows from condition (3.19)] and consequently requiring the same 
behavior for alg(X ) and ai(x) at x --~ 0. 

Now we may reverse the procedure indicated in equation (3.31) and 
reexponentiate the terms of the infinite sum under the remaining fermionic 
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integration, which, however cannot be done in a closed form. Proceeding in 
this way, we obtain 

exp(iFH[A, W, ~] )  

= C exp(iF~[A]) 

• f DO D~ exp(i f d4x [~t(x)t~(x) + -~(x)'q,(x)l} 

• f d4xd'x'[-O(x) + ~(x)]exp[ie f]'dy~A~(y)] 

• S?~)(x - x')[t~(x') + ~(x')] 

_ 1 f da x d4x, d4 z d4z, 
2 J 

x ([~(x) + ~(x ) ]S?~) (x  - x')[~(x') + ~(x')] 

• [~(z) + ~ ( z ) l S ~ ) ( z  - z')[~(z') + ~(z')l 

( [ I  ] ) )  X exp - i  d4yday ' J~(x ,x ;y )D~(y-y)J~(z , z ,y ' )  - 1 

+ . . . ~  (3.37) l 

with 

Sff~)(x - x') = [i 6~alg(x - x') - mblg(x - x')] (3.38) 

In the last term of equation (3.37) we have already put A~ -- 0 because we 
will only consider one-loop contributions [i.e., those stemming in equation 
(3.37) from the quadratic kernel of the fermion action in the presence of the 
arbitrary gauge potential A~] to the quadratic kernel of the gauge field action 
F~. 14 In equation (3.37) the remaining fermionic integration is now done (in 
the sense of perturbation theory, and which after integration is formally 
summed up again). In performing the Gaussian integration [i.e. treating the 
last term (and all further terms) in equation (3.37) as a perturbation], for 
calculational simplicity we neglect the source terms (linear in ~ ,  ~[7; others 
are not of our present interest) that contain [g(x) - l] factors. For our 

14As long as ct is sufficiently small, higher loop contributions will only lead to small quantita- 
tive changes. 
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envisaged study, due to g(0) = 1 these source terms are irrelevant in the 
asymptotic UV region and in the asymptotic IR region they will lead to 
certain changes, which, however, are apparently small as long as et is suffi- 
ciently small. Now, without appealing to the eventual range of or, we simply 
understand this neglect as a certain further modification of the map f but 
which preserves all important features (in particular, it does not lead to any 
change in the asymptotic UV region). So we obtain for equation (3.37) the 
following resulttS: 

exp(iFil[A, atr, ~ ] )  

= C exp(iF~[A] + iAFI~ 

X e x p { i l d 4 x d 4 x ' ~ ( x ) S ~ g , ( x - x ' ) X I r ( x ' ) - I d 4 x d 4 x ' d 4 z d 4 z '  

x V g ( X ) S l d ~ ( x  - x ' ) s l ~ g ~ ( x '  - z ) S ? ~ ( z  - z ' ) ' I ' ( z ' )  

I d4y d4y' J~(x, x'; y)D~V(y- y')Jv(z, z'; y ' ) + " "  } (3.39) X 

Here AFI ~ is defined by the equation 

exp(iAF~[A]) = [ DO D~ exp(iFlt-[A, , ,  ~]) (3.40) 

However, as is clear from equation (3.37), for the present purpose in equation 
(3.14) al, bl have to be replaced by aig, big, respectively. Equation (3.39) 
provides us with those terms of  the image Fu of FI we need to know for our 
further investigation. So we may now proceed to apply the fixed-point condi- 
tion to the kernel of the fermion action. 

3.3.2. The Integral Equation for the Kernel of the Fermion Action 

Considering Fu[O, xt r, ~ ]  = FIll0, xI r, ~ ]  and writing the quadratic 
terms as 

F~[O, q,, ~] 

= [ d4x d4x ' ~(x)[ian(x - x') ~x' - mbli(x - x')]xtr(x ') (3.41) 

equation (3.39) provides us with expressions for all, bH. Consequently, we 

ISWe display only noninteraction terms of Fu, in which we are exclusively interested. Further- 
more, on the r.h.s, only the term containing one photon propagator is shown. 
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may explicitly write down the fixed-point condition al = an, bt = bll. For 
convenience, we do it in terms of ag, b#, but any information obtained for 
these quantities can be translated into terms of  a, b by means of  relations 
(3.35), (3.36). The integral equation r eads  16 

[g(x -- Z') -- 1]S~gJ(x - z') 

= - i g ( x -  z ' ) (  I dax ' d4z S~g~(x- x ' )S~g)(x ' -z)S~gJ(z-  z') 

f } • day d4y ' J~(x, x'; y)D~V(y - y )J,,(z, z ; y ' )  + "'" (3.42) 

Equation (3.42) represents two coupled integral equations for ag, bg and now 
needs to be solved. In general, this is a complicated task and we will restrict 
ourselves to the solution of  equation (3.42) in the asymptotic UV [i.e., -m~(x 
- z') 2 ~ 0] and IR [i.e., -m2(x - z') 2 ~ ~l  regions, respectively) 7 Before 
studying these cases let us mention that equation (3.42) has an exact but 
trivial solution, namely 

ag(x) = a(x) - 0 (3.43) 

be(x) = b(x)  =/~(~)a~4~(x) (3.44) 
where/~(o0) is some arbitrary real constant. Of  course, this solution corres- 
ponds to the noninteracting case where the gauge and fermion sectors are 
decoupled and it is therefore not very interesting. However, in view of  (3.15) 
and (3.16), in the following we will search for the interacting solution of 
equation (3.42) as the sum of the trivial solution (3.43), (3.44) and some 
additional nontrivial contribution. As already mentioned, it seems to be rather 
complicated to find a nontrivial and exact solution of  equation (3.42), but it 
appears possible to analyze it merely exactly, at least in the asymptotic UV 
region and for small ot to leading order in the IR region solely based on 
those terms explicitly displayed in it. First we will turn to the asymptotic 
UV region. 

3.3.2.1. Solving the Integral Equation in the Asymptotic UV Region. 
Exploring equation (3.42), one soon recognizes that to find a solution correct 
in the asymptotic UV region one needs to assume that the photon propagator 
D~(x)  is finite in the coincidence limit x ~ 0. Consequently, the photon 
propagator written as~8 

16Note that the fixed-point condition has been multiplied by g(x - z') also. 
17We always have the Euclidean region in mind, of course. 
18An appropriate gauge-fixing term Fg I has been added to the gauge field action F~, i.e., we 

have chosen a~(p) = ip~ d(p) :2. 
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D~V(x) = I d4p e ipx 1 [ pr ] 
- (2,rr)4p2 ~ i ~ d ( p )  g ~ -  (1 - k) p2 + i~J (3.45) 

reads in the coincidence limit 

3 + )~ K a m 2  (3.46) D~(O) = i g ~  4 

io o 1 ds 1 
KA = 4,tr--- ~ - f f~ 

where Ka is some finite, real constant. 
The analysis of the integral equation (3.42) in the asymptotic UV region 

now starts by replacing the photon propagator (3.45) by its leading short- 
distance term (3.46). Consequently, the current-current interaction then reads 
in the short-distance limit 

I d4y d4y ' x'; - y')J~(z, z'; 3~(x, y ) D ~ ( y  y')  

= ict~r(3 + ) Q K a m Z ( x  - x ' ) ( z  - z ' )  + " ' "  (3.47) 

and the function g has the short-distance behavior 

or'n- 
g(x) = 1 + ~ (3 + ~.)KamEx 2 + ".. (3.48) 

The leading short-distance terms (3.47), (3.48) have to be inserted into the 
integral equation (3.42), yielding 

I [ d4x, ( x  --  Z')2S~gJ(x - Z ' )  = d 4 z  S~g~(x - x ' )S (g ) ( x '  - z )  

• S~gJ(z - z') (x - x')(z - z') + "'" (3.49) 

Here, certain constants have been divided out. For convenience we will now 
further consider the above integral equation in momentum space. For this 
purpose we translate coordinate difference factors that occur [i.e., (x - z') 2, 
(x - x')(z - z')] into momentum-space derivatives. Having this in mind, 
one may convince oneself that to leading order, terms (indicated by d o t s . . . )  
containing more than just one photon propagator and which are not all coupled 
to a closed fermion loop do not contribute because they are related to a 
higher number of derivatives in momentum space (and those terms then are 
falling off faster in the UV--i .e . ,  high-momentum--region). Effectively, the 
terms displayed on the r.h.s, of equation (3.49) are only modified by diagrams 
where all photon propagators are coupled to closed fermion loops. However, 
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these closed fermion loops can always be summed up to give an effective 
(modified) photon propagator. As long as its coincidence limit remains finite, 
equation (3.49) applies. So, once the assumption (3.20) is accepted, the UV 
analysis can be done exactly. In addition, already from equation (3.49) we 
recognize that the leading UV term of the solution we are in search of is 
independent of the coupling constant a as well as of the structure of the 
gauge field action [beyond condition (3.20)] determining the constant KA, 
which will give the UV behavior a universal character. 

Equation (3.49) now reads in momentum space (the subscript g is omitted 
for the moment) 

iJ[sd ' + 3a'] + m[sb" + 2/~'] 

2 
- s a ~  + ~2 

• { p [ s 2 a ( a ' )  2 + saZa  ' + 2sa' /~/~'  - s a ( / ; ' )  2 - �89 + abe '1  

+ m[2s2aa '~  ' - s2(a')2~ + sa2~ ' - s a a ' ~  + s ~ ( f / )  2 - a2b[} 

+ . . .  ( 3 .50 )  

Here, the notation is a = ti(s), a '  = (dlds)a,  s = -p21m2. We will now solve 
the two coupled differential equations represented by equation (3.50) in the 
asymptotic UV region s ---) oo. Our Ansatz, in accordance with conditions 
(3.15), (3.16), will be a = as,/~ = /~(oo) + /~s, where ds, /~, are assumed to 
vanish in a power-like way in leading order for s ~ ~. Neglecting all clearly 
nonleading terms, we find that the two coupled differential equations yielded 
by equation (3.50) then read 19 

-~sasl -,, +-~as3-, = s2as(a~)2 + sasa~--2"' _ ~asl-3 + [2sa" + as]bs" -' + .-- (3.51) 

S ~  

l s b  s' -J- /Ts r -= - s 2 ( a s )  2 - s a s a  s - a 2 -J-- , - -  ( 3 . 5 2 )  

Let us first discuss equation (3.51) and its consequences for the asymptotic 
UV behavior of/~s- As long as the term on the 1.h.s. of  equation (3.51) does 
not vanish to leading order we are forced to conclude that 2~ 

b" ~ l /s ,  i.e., /~ ~ Ins  

However, such a behavior is in conflict with gauge invariance because it is 

J9Note that also a temporary transition a, --~ f~(oo)d,, bs ~ b(oo)bs has been applied and then 
the factor 2/~(~) has been divided out of the equations below. 

2~ course, one could also try the assumption that the term in front of  b" vanishes (i.e., ~, 
s~.~ s_U2); however equation (3.52) immediately leads to the same result. 



Functional Integral Equation for Complete Effective Action 309 

not in line with condition (3.16). So, we are led to conclude that the l.h.s. 
o f  equation (3.51) should vanish to leading order, consequently the fol lowing 
must  hold (Ca is some constant): 

$-.-~o0 C~ 

as sZ + . . -  (3.53) 

This information is sufficient to determine the leading behavior of/~s f rom 
equation (3.52), and we find 

S"'~~176 C~ 
/~ = s3 + - "  (3.54) 

We may now come back to equation (3.51) and determine the next-to-leading 
term of  as. Writing tis without any loss o f  generality as 

c .  
as = ~ -  ~7(s), 0(oo) = 1 (3.55) 

and taking into account  (3.53), (3.54), we find that equation (3.51) then reads 21 

$-.-~m 
Ca l [ s o , , _  o,]  - 1 5 c  3 
2 s 2 2 s 6 + " "  (3.56) 

2J To be more precise, the vanishing of the leading term on the l.h.s, of equation (3.56) [equation 
(3.55) inserted] rests on the relation [/~ = (-P0, P)] 

[] P p [ - ~  = i" 2~r 2/1~8~4~(p) 

accompanied by certain reasonable assumptions about a,(s ---) 0) (i.e., a -- s 2, s ~ 0; or even 
some weaker condition). 

and we find 

s--~ C]a 
O(s) = 1 - ~ - + - - .  (3.57) 

Summariz ing the above results, one can say that equation (3.42) admits 
a (unique) solution respecting conditions (3.15), (3.16). It behaves in the 
asymptotic UV region as follows: 

ag(s) = -~- b(oo) 1 - 7 + " '"  (3.58) 

bg(s) = /~(~) 1 - ~ + - - .  (3.59) 
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Most important, in a qualitative respect this asymptotic  UV behavior  is 
independent o f  the coupling constant ~t and of  any specific details o f  the 
photon propagator  structure beyond condition (3.20). Furthermore, due to 
g(0) = 1 [cf. equation (3.34)], a , /~  exhibit the same leading UV behavior  
as rig,/~8" We will discuss the consequences o f  the above results in Sections 
3.3.3 and 4. In the next subsection we will study equation (3.42) in the 
asymptotic IR region. 

3.3.2.2.  So lv ing  the In tegra l  Equa t ion  in the  A s y m p t o t i c  IR  Region .  For 
the IR analysis o f  the integral equation (3.42) we need to apply our Ansatz 
(3.21) to the photon propagator. 22 Consequently,  the current-current  interac- 
tion reads in the long-distance limit to leading order 23 

f p -- t d4y d4y ' J~(x, x ' ;  y)Di'~(y - y )Jr(z,  z ; y ' )  

. a  [1 + h ( x - x ' ) ( z - z ' )  
"tr 2 (x - z ' )  2 

( x  - x ' ) ( x  - z ' )  ( x  - z ' ) ( z  - z ' ) }  + . . .  + (1 x) (3.60) 

Here, ( x  - x')  2, (z - z') 2 are understood to be small compared with (x - 
z')2. 24 The function g has the long-distance behavior (we give it here just for 
Euclidean space, for the full expression and its derivation see Appendix A) 

Cg = (413) -~'(3-~y4~ exp [(3 + h) + 2(3 - h)~/l 

Note that equation (3.61) contains the B loch-Nords i eck  contribution 
(Kememann and Stefanis, 1989; Karanikas e t  al. ,  1992; and references 
therein) exhibiting a power-like behavior  with the well-known exponent ~(3 

22To obtain this propagator a gauge-fixing term Fg r with ri~, = ip~ d(p) jr2 has been added to 
the gauge field action F~. 

23Of course, it is not specifically related to the Ansatz (3.21); only next-to-leading terms will 
be influenced. 

24We always have in mind the region -m~(x - z') 2 --) oo. More precisely, for any large but 
fixed value of (x - z') 2 contributions from integration regions in the integral equation (3.42) 
where (x - x') 2, (z - z') 2 are not small compared to (x - x'): can be expected to be small 
due to the expected decay of ag, b e there. Furthermore, terms containing higher powers of 
1/(x - z') 2 are suppressed in the asymptotic IR region whatever their coefficient numerically 
might be. 
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- h)14'rr. It appears justified to assume that the leading IR behavior displayed 
in equations (3.60), (3.61) will depend on additional terms to be introduced 
in the Ansatz (3.21) in order also to satisfy condition (3.20) only very weakly. 
For the purpose of calculational simplicity those terms can therefore be 
safely disregarded. 

We may now insert equations (3.60), (3.61) into the integral equation 
(3.42). Having in mind IR analysis in Euclidean space, on the 1.h.s. of equation 
(3.42) we replace the factor [1 - g(x  - z')] simply by 1 because this is the 
leading contribution due to the exponential decay (i.e., oscillation in Minkow- 
ski space) of  g(XE) for m2x 2 --~ ~ .  Furthermore, coordinate difference factors 
[i.e., (x - x')~, (z - z')~] occurring on the r.b.s, of equation (3.60) are 
translated into momentum-space derivatives acting on the Fourier transform 
of the kernel S-l  of the fermion action. So, equation (3.42) reads now 

[i itxag(X - z ' )  - mbg(x - z')] 

= ~ g(x  - Z')[ 1 + h g ~  + (1 - h) (x -- z')~(x ~ z ' ) ~ /  
"rr 2 ( x - z ' )  2 [ ( x - z ' ) 2 1  ~ J 

I d4p m/~g(p)] } X ~ eip~x-z'){pa~[l~ag(p) + 

X l~as(p) - mE#(p)  {eG[Pag(p) + mbg(p)]}  
p2a2g(p) _ m2/~2(p) + ie 

+ ... (3.62) 

Concerning the contribution of terms containing more than just one photon 
propagator (indicated by dots ...), the following comments are due. Most 
of those terms will finally yield higher powers of I/(x - z') 2 at least and 
these can therefore be neglected in the asymptotic IR region. However, one 
should expect that terms also occur which are of the same order as the one- 
loop term given above. Such terms should be expected to contribute only 
weakly numerically as long as c~ is sufficiently small, because each additional 
photon propagator is accompanied by an additional factor of ct. This argument 
is what is left within the present approximative approach of the line of 
reasoning applied in standard QED perturbation theory. Of  course, the belief 
based on this reasoning may turn out to be wrong because of nonperturbative 
mechanisms which are not easily seen at the present stage of the investigation. 
Anyway, in the region where ct is of order 1, terms containing more than 
just one photon propagator can no longer be neglected in principle. However, 
for the purpose of the present model calculation (without appealing to the 
eventual range of or) we simply ignore all terms containing more than just 
one photon propagator also in the region where ct is not small. 
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To determine the IR tail of as, bg [i.e. the l.h.s, of equation (3.62)] it 
remains to find the leading long-distance contribution of the Fourier integral 
on the r.h.s, of equation (3.62). To proceed further we would preferably need 
to know the analytic structure of the integrand, in particular that of the 
denominator. We do not have any reliable information on this, but it appears 
reasonable to assume that the integrand has a simple pole at some P0 = -- 
x/p  2 -- So m2 with 

1;s(s0) 2 
So - ~g(s0) 2 (So < O) (3.63) 

and that just this pole determines the leading long-distance behavior of the 
Fourier integral. Consequently, we may exploit the residue of this pole, and 
the leading long-distance contribution of the Fourier integral is simply given 
by the product of the nominator of its integrand [appropriately treated by 
considering p ,  factors occurring as configuration space derivatives acting on 
equation (3.64)] taken at p2/m2 = - s0  and the leading long-distance term of 

1 f d4p e ip(x-z') 
as(So)2 J (2704 p2 + Sore 2 + ie (3.64) 

The explicit calculation is now straightforward but somewhat tedious. 
In performing the calculation we always keep track of  those terms contributing 
in the long-distance region to leading order only. In particular, the leading 
long-distance term of equation (3.64) is read off from the relation (written 
for Euclidean space here) 

I d4pE e ipExE _ m 
KI(mlXE I ) (2Ir)4 p2 + m 2 4"rr 2 I xE I 

= e-mtxE'[1 + " " ]  (3.65) 
2(2'tr) 3r2 IXEI 3/'2 

The result obtained this way for the IR tail of  as, b s is then (we give this 
and all further results for Euclidean space) 

rn2~E-~~176 otCgG (-So)3laas(So) (m iXE i )_7/2+a(3_x)/2 ~ 
ag(XE) = m4 (2~r) 5/2 --x/~o + od2x/~ 

X { e x p [ - ( ~ - s 0  + od2v/~)mlxel]}[l + - " ]  (3.66) 

bs(XE) = -~ ( ~--So + od2x/~)as(m2x2E --> oo) (3.67) 

3 [ a'~(So) + ~ b'g(So) + (3.68) 
G = - ~  (1 + X) + 2(3 - X) so as(So) as(So) 
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H =  -3(1 + h ) -  G (3.69) 

Equation (3.68) provides us with an implicit expression for G only because 
in view of equations (3.67), (3.69) its r.h.s, also depends on G via the term 
b'g(so)/ag(so). Therefore equation (3.68) represents a cubic equation for the 
value of G which has always at least one (real) solution. From equation 
(3.68) one recognizes that G is an RG-invariant quantity, i.e., it is invariant 
against (finite) mass and (fermion) wave function renormalizations (we will 
discuss the normalization issue below). 

Taking into account the definitions (3.35), (3.36), we find from equations 
(3.66), (3.67) the IR tail of a, b, 

m2FE-~ otG 
a(XE ) = m 4 ( _so)l/4~g(So)(mlXEi )-7/2 

• [exp(--~--s0 mlXEI)][1 + " ' ' ]  

,,2~__~ H ~ a(m2.~ E --o oo) 
b(XE) -- G 

(3.70) 

(3.71) 

From the above equations we see that the IR tails of a, b agree qualitatively 
(the same is true for ag, bg). 

After having obtained the functional dependence of the kernel of the 
fermion action in the asymptotic IR region, we still need to fix the arbitrary 
constants involved (in particular, this will require the discussion of the normal- 
ization issue not touched on so far). For this purpose we have to calculate 
the Fourier transforms of ag, bg and those of a, b, the latter of which are 
determined by the solution of the integral equation (3.42) via equations (3.35), 
(3.36). It appears reasonable to represent these Fourier transforms in the low- 
s region, 25 which is appropriate for the normalization purposes, by the sum 
of the Fourier transforms of the trivial solution (3.43), (3.44) and the Fourier 
transforms a~g,/~g, as,/~s of the IR tails of ag, bg and a, b given in equations 
(3.66), (3.67) and (3.70), (3.71), respectively. So we simply extend the long- 
distance representations (3.66), (3.67), (3.70), and (3.71) to the whole configu- 
ration space and expect that this procedure will give reasonable results in 
the low-s region at least. 

The following formula applies to the calculation of the Fourier transforms 
(Prudnikov et al., 1990-1992): 

25In the following we will deliberately leave open the precise meaning of this term. We will 
return to the issue in Section 3.3.3. 
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f d4XE e-iPExE(X2)Ke-PlXE I 

4~2F(4 + 2K) _, ( -P ) 
= ipEl(p2 + p2)3/2+K P2(I+K) 

4q'r2F(3 + 2K) 
p2(p2 + p2)3/2+,,: 

X ~ + PE l+2K/" ~ /  - -  PP2(I+K) P ' 
\ , / o  ~ + p~!  

R e p > 0 ,  R e K > - - 2  (3.72) 

Having in mind continuation to Minkowski space, note that (more precisely) 
the condition I lm IpEII < Re p is to be respected. Although it is less compact, 
in the following we will always exploit the lower representation of equation 
(3.72) because we find it more convenient for an eventual transition back to 
Minkowski space. For simplifying some of the formulas below we define 
the function 

T(s, K) = (1 + s)(l-2K)/4[x/l + sP-st2+~((1 + s) -1/2) 

- P-3t2+,,((l + s)-l/2)] (3.73) 

For rig given in the low-s region as the Fourier transform of equation 
(3.66), we obtain the following result: 

aC~G 

x ( - , /~0 + ~/2,/g) ' ' 2 - " ~ - ~  

• T(s( -,/-~o + o d 2 , ~ )  2, ~(3 - h)/2"rr) (3.74) 

By specifying s = So (this corresponds to an analytic continuation to Minkow- 
ski space), we find that the above equation leads to a consistency equation 
[the value of  ~g(So) drops outl yielding a first relation among the parameters 
of the IR solution. It reads 

(l_, / 
{~ } X exp ~ [(3 + h) + 2(3 - h)~l w-1/2( 1 + w) le-~(3-x~2~ 

X T(-w2(1 + w) -2, ~(3 - h)/2~r) (3.75) 
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2 
w = - x / - Z ~  (3.76) 

ot 

Here, G is understood as a function of w and ot (and h). It is given as a 
solution of the following cubic equation derived from equation (3.68): 

( ll - ,  18(3 h)(1 + h) 2 1 + L(w, ~)z O, L(w, ~) ag(so) 
. . . .  So ag(So) 

(3.77) 

To obtain this cubic equation we have used the relation 

----~----. ag(s) +/~(~) (3.78) 

based on equations (3.66), (3.67) and therefore valid in the low-s region only. 
We see that solutions G of equation (3.77) are functions of w and ~, while 
solutions w of equation (3.75) exclusively depend on ~ (and on h, in principle, 
if for conceptual reasons we were not to set it to zero as outlined in Section 
3.1). Clearly they do not depend on/~(~). Although numerically the discrimi- 
nant of equation (3.77) always turns out to be negative in the relevant domain, 
only one of the three real solutions of equation (3.77) then proves appropriate 
to find a solution of equation (3.75). In general, solutions G and w(e0 of  the 
above equations can only be found numerically (for a plot of numerical 
results see Figs. 1 and 2). However, for sufficiently small ot (ct < < 1), w(ot) 
turns out to be large, w(ot) > >  1, and equation (3.75) admits an analytical 
solution in this region. This asymptotic solution will be studied now. 

We investigate the case ct < < 1 [we assume that the solution w(ot) in 
this region will be much larger than one]. Let us start with the following 
asymptotic representation (Gradshteyn and Ryzhik, 1972): 

Z - I / 2 + ~ [ z - I P - 5 / 2 + K ( Z )  - -  P-3/2+K(Z)] 
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Fig. 1. Solution w of equation (3.75) as a function of a.  

2.'1 
Q 

( (2z)2~ F(�89 K) F(1 + K) ) ] 
x ~ - ~ r(~ + ~) r ( l  - ~) i + o(z  -~(~-,)) , 

K > 0 ,  Izl >> 1 

3~ ' 
K = 0 ,  Izl >> 1 

(3.79) 

(3.80) 
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Fig. 2. Solution G of equation (3.83) [with w as solution of equation (3.75) inserted] as 
a function of et. 

Then, from equation (3.75) one finds [here In w(c0 is thought to grow for 
small a like oL-t/2 at most] 

G = ~  1 - ~  (3 + h) + 2 ( 3 -  k) - In 

1/o,(3_ - x); } 
+ 2 \ 27r In w(eO ln[a4w(a)] + 0(or 3/2) (3.81) 
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Taking into account (3.81), we can then insert equation (3.78) on the r.h.s. 
of equation (3.68) and equation (3.81) on its 1.h.s. The solution of the resulting 
equation for w(ct) is now straightforward. One finds for small ot 

1 {2 /or 27r + 4 +  N / e t ( 1 - h / 3 )  lnot 
w(ct) = ~-~ exp ~ (1 --- M3) 2,r 

- l x / c t ( 1 - h / 3 ) [ ~ + 6  2-tr (338"--"--~h ] +O(ct)} ' -  h) o t < < l  

(3.82) 

Note that higher loop contributions that may possibly be taken into account 
in the integral equation (3.42) will influence the above result via the last 
term in the exponent only. To see this, simply replace ~t by ot[l + O(ct)] in 
the first term in the exponent. Finally, using (3.82), one finds from equation 
(3.81) the following expression for G(ct): 

37r{ ~/ot(l - k/3) or(3 - h) in ot 
G(a) = ~  1 + 2  2-rr + 2 ~  

+ or (9-  5 h ) +  15(a(l - h/a)?  n } 
4at 2-rr ] In ot + O(a 3n) , c ~ < < l  

(3.83) 

The next task is to find the solution So of equation (3.63). However, any 
solution So can only sensibly be related to physics if the mass normalization 
to be used is specified. So, before attempting to find So, we discuss the 
normalization issue in somewhat greater detail. Let us assume we had deter- 
mined So. Then, whatever normalization of ag(So) is applied, equation (3.63) 
yields the value of bg(so), and in our specific case the value of b(oo), because 
equation (3.67) is not independent of equation (3.66). Now, let a certain 
function ~ = ~ ( - m 2 x  2) with ~(0) = 1 define a map ~,: ag --~ ag,, bb --~ bg~ 
by applying the prescriptions (3.35), (3.36) to ~. Considering the equation 

/~g~(~'l) 2 
sl - ag~(sl)2 (sl < 0) (3.84) 

we see that the map ~ obviously induces a map ~: So ---> sl. If ~ -- 1, ~ and 
are the identity maps. If we specifically choose ~ = g-i,  then ~ is the 

inverse of g and ag~ = a, bge = b [cf. equations (3.35), (3.36)]. However, a, 
b are related to physics and we would like to formulate normalization condi- 
tions in terms of them. We naturally prefer to impose standard normalization 
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conditions on d, /~ (i.e., mass shell normalization at the physical electron 
m a s s  m)" 

d(st = - 1 )  = +/~(s t  = - 1 )  = N2  -t = l ( 3 . 8 5 )  

In other words, we of course require that the fermion propagator derived 
from the effective action we are in search of has a pole related to the 
physical electron mass m. In equation (3.85) N2 is the (fermion) wave function 
normalization constant. 26 Note that it is always possible to choose st = - 1  
because in our setup there exists a scaling symmetry m ---> "rm (s ---> s/'r2), 13 
---> r2(3, b ~ b/r for any nonzero real parameter r [RG invariance against 
(finite) mass renormalizations]. Consequently, we now apply the inverse map 
fgj-l: sl ~ So to determine So. Taking into account [cf. equations (3.70), (3.71)] 

/~(s) = - - , f ~ 0 [ 1  + 3(1 + h)]a(s) + / ~ ( o o ) ~ -  (3.86) 

(valid in the low-s region) and the low-s result for the Fourier transform of a, 

a(s) = v/2aG(ot)a(So)(sols)T(-slso, 0) (3.87) 

we conveniently calculate for the st lx)_le via -x/-~a(Sl) = ---/~(sl) the value 
of the RG-invariant quantity b(oo)/[~FS-S-oag(So)] [i.e., the value of the RG- 
variant quantity b(oo) expressed in terms of So and ag(So)]. We find 

So 
• T ( - u  -l, 0), u = -- (3.88) 

Sl 

The same quantity can now be found from the So pole via ,/-L-]-o~g(s0) = 
bg(sO), 27 and both values have to agree, of course, which provides us with 
an equation for So measured in units of st, which in our case (st = - 1 )  is 
related to the physical electron mass m. The equation reads 

( l)[ 3,1+ ,1 
1 + 1 + w - - ~  ) 1 + ~(~)- J 

26A (finite) wave function renormalization corresponds to a change in N2. 
27We omit the other root, ~ ag(so) = -bg(so), because one does not find any solution So 

in this case. 
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Again, in general, solutions s0(a) of this equation can only be studied numeri- 
cally (see Fig. 3). However, for very small et (or < <  1), where So is very 
close to - 1 ,  it can also be investigated analytically and one finds [choose 
the upper sign in equation (3.89)] 

v/~[1 + O(x/~ in or)] 

=~/1-2*rX/3 3 ( l + s ~  l n - ( l + s ~  64 , a < < l  (3.90) 

It should be noted that for equation (3.89) a critical value ot = etc exists 
which separates the a regions in which the upper and lower signs in equation 
(3.89) apply. For a < Ctc only in the case of the upper sign does a solution 
So exist, 2s while for ot > a t  only the lower sign allows a solution So. This critical 
value ct c corresponds to the singularity So(a --~ etc) ---> -oo. Consequently, we 
find from (3.89) the equation for determining etc by considering So - r  - o o .  

It reads 

[ ,  ][ 0 , 91, 1 + 1 + W(~c) 2 q / ~ G ( ~ )  1 + G(~c) J 

Numerically, one finds e~c ~- 0.70 (see Fig. 3). Furthermore, there exists a 
maximal value ~ = ~m~ > ~ beyond which no solution So can be found. The 
value of e~m~ corresponds to the limit s0(~ ~ ~m~) "-~ - 1. The corresponding 
equation for ~m~ reads 

+ 4 a,~,~G(~m,D] 

4 1 + = 0 (3.92) 
+ 1 + W(~m~) 3"rr 

The numerical calculation yields ~m,~ -- 2.64 (see Fig. 3). 
From the above considerations it is clear that to find a consistent IR 

solution of the integral equation (3.42) requires the parameter ~ of our Ansatz 
(3.21) to be understood as some function of ~ and therefore it cannot be left 
arbitrary up to the point where we are going to impose the fixed-point 
condition for the kernel of the gauge field action. It will be true in general 
that a single parameter of any Ansatz (containing, say, n parameters) for the 
kernel of the gauge field action needs to be reserved to allow a consistent 
IR solution of the integral equation (3.42) to be found. We have only one 

28It is clear that for small ot (i.e., ot ----> 0), a smooth transition from -x/~o ~(So) = b~(so) to 
ti(sz) = ---/~(s~) must exist; consequently the upper sign holds. 
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Fig. 3. Solution So of  equation (3.89) as a function of  ct. The dashed line is located at o~c 
0.70, corresponding to the singularity - s o  --> ~. It separates the regions where the upper (ct 
< ctc) and the lower (or > ctc) sign in the normalization condition (3.85) are applied respectively. 
Beyond am~ - 2.64, equation (3.89) does not have any solution as one recognizes from the 
dotted line drawn at -So = 1. 
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parameter at hand and fromequation (3.76) we immediately find its depen- 
dence on a (see Fig. 4), 

a~w(a) 2 
13 = 13(a) = (3.93) 

4 S o ( a )  

Here, w(ot) and s0(a) are solutions of equations (3.75) and (3.89), respectively. 
One easily recognizes (Fig. 4) that for small ct the parameter 13 assumes 
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0.4 0.8 1.2 1.6 2 2.4 

Fig. 4. The parameter 13 as a function of  et [cf. equation (3.93)]. For further comments 
see Fig. 3. 
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unrealistically large values, which underscores the point that the present 
approximate calculation has to be understood as a model calculation only. 

Having applied the normalization condition (3.85) and fixed the parame- 
ters G, So, 13, we can write the functions ~, as,/~ = /~(oo) + /~s in the low-s 
region as follows (So <-- -1) :  

T(-slso, 0) (3.94) 
a(s) = sT(sol, O) 

/~(s) = [ - 1  - /~(~)]a(s)  + /~(~) (3.95) 

The parameter/~(~) in the normalization applied reads (see Fig. 5) 

3(1 + h)]  (3.96) n •  l +  j = _+l - = 

For small a we immediately find from equation (3.83) 

b(~)= 1 + ~-s~ +4(1 +h) et +O(~ ' a x  o ~ < <  1, cx<cxc 

(3.97) 

Taking into account equation (3.90) (So --~ - 1 ,  cx < <  1), we recognize that 
for small a (a < <  1, a < ar we have/~(oo) ~- 2. From a physical point of 
view this might be interpreted in such a way that at low energies the fermion 
action merely describes individual real fermions (/~ ~-- 1; i.e., a single-particle 
interpretation is possible), while at high energies it reflects collective proper- 
ties of  the vacuum, which are related to fermion (electron-positron) pairs; 
consequently,/~ --/~(~) - 2. Apparently, such an interpretation breaks down 
at stronger coupling. 

Now, the appropriately normalized as(s) [equation (3.74)] in the low-s 
region reads 

F - + cx (-s0)  -u4 

x ( - , /-~0 + oa2,, /~) 1~2-~(3-~'  

• T(s(~-So +,,,~/2,/~) -2, a(3 - X)/2-rr) (3.98) 
;'T~(sff l, 0) 

and equation (3.78) can be written as 

/~g(s) = [___ 1 - / ~ ( ~ ) ] ( 1  + w@a))ag(s) +/~(oc) (3.99) 

Clearly, So, 13, and/~(oo) are functions of a (h = 0 as explained in Section 3.1). 
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Fig. 5. The parameter b(oo) as a function of  ~ [cf. equation (3.96)]. Note that/~(oo) is 
close to 2 for small ix. For further comments see Fig. 3. 

Finally, the correctly normalized IR tails of a, b characterizing the kernel 
of the fermion action are 

'n2:E--~ m 4 f--SO) -I/4 
a(xO = 

,/~(2,~) 5/2 T(s~', O) 

• (mlxEl)-7/2[exp(--v/'-~--so mlxEl)][1 + ..-] (3.100) 
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b(XE) = [+---1 -- b(oo)la(rn2x~ ~ ~) (3.101) 

where So and/~(oo) are to be considered as functions of a. It is worth emphasiz- 
ing that qualitatively equations (3.100) and (3.101) agree with the long- 
distance representation of the one-loop fermion self-energy calculated in 
standard QED perturbation theory. 

To conclude this subsection, it should be emphasized that in analyzing 
the integral equation (3.42) for the kernel of the fermion action in the asymp- 
totic UV and IR regions, respectively, based on certain reasonable assump- 
tions, we have obtained a qualitative and nonperturbative understanding of the 
behavior of its solution. Furthermore, the IR analysis even yields approximate 
quantitative, nonperturbative results which, combined with the information 
about the UV behavior of the kernel of the fermion action, allows the approxi- 
mate calculation of the QED coupling constant a to be attempted. This we 
will study now. 

3.3.3. The Fixed-Point Condition for the Kernel of the Gauge Field 
Action and the Approximate Calculation of the QED Coupling 
Constant ot 

From equation (3.39) we recognize that the functional integration induces 
a change AFla[A] to be added to the gauge field action F~[A] to obtain 
Fna[A]. In accordance with our approximation strategy, we display only those 
terms that match our Ansatz (3.21), 

[ [] ] A F f [ A I  = a d4x A~(x)[g~vt~ - a~ad C~. + G . - ~  + " "  AV(x) 

(3.102) 

Because ag, bg respect conditions (3.15), (3.16) [cf. equations (3.58), (3.59)], 
no terms violating gauge invariance occur. C~a reads explicitly [Scharnhorst 
(1995), equation (4.2)] 

~ 2 

32" ii ~ Cla = m [ ~ j  - ds M(s) (3.103) 

r .4 +,N, 1 
M(s) - sd2g + b~2g Lsd -~ b-2g 

2 3 . . . .  2 + ~ s a ~  + 3s2a~ + s2bgb; t 

2sail; + 3s/~s~ ~ - s(/~;) 2 + 3/~fii] (3.104) + 
] 
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(as explained in Section 3.3.1, we confine ourselves to one-loop contribu- 
tions). From the above expression one recognizes that C~ is an RG-invariant 
quantity, i.e., it is invariant against (finite) mass and (fermion) wave function 
renormalizations. C2~ has not yet been calculated in terms of ag,/~g, but it 
will have an analogous representation. Because as,/~g depend exclusively on 
or, the coefficients C~a, C2~ can both be understood as functions of this 
parameter. Then the fixed-point condition d~ = dH according to our approxima- 
tion strategy reads (cf. Section 3.1) 

Ct~(~) = 0 (3.105) 

C2~(~) = 0 (3.106) 

It is clear that within our approximative approach we do not have enough 
parameters left to satisfy both of these equations (unless they are degenerate, 
perhaps by accident). We decide to choose equation (3.105) as the fixed- 
point equation because we require that, at least in the asymptotic IR region, 
the fixed-point condition for the map f should be fulfilled. Consequently, to 
determine the QED coupling constant ot we have to find the zero(s) of C~(ot). 

The explicit calculation of C~ has, of course, to be based on information 
obtained in the preceding subsections. The first point to be made is that we 
will take equation (3.103) as it stands. In principle one could identically 
reformulate it by exploiting partial integrations for functions that obey condi- 
tions (3.15), (3.16). We choose the present representation for its 'minimal' 
shape (of course, this is merely a matter of taste). Let us also emphasize that 
it turns out to be advantageous because a certain piece is already integrated 
out and it therefore depends on the boundary values of bg only. This term 
contains certain nonperturbative information from the solution of the integral 
equation (3.42) for the kernel of the fermion action not easily incorporated 
otherwise. Finally, one should keep in mind that although different representa- 
tions of equation (3.103) are equivalent in a rigorous mathematical sense, 
they may lead to different answers if approximate information is taken into 
account only (and this is what we will do). 

Now, the first guess might be simply to insert into equation (3.103) the 
IR representation found for ag, /~g [equations (3.98), (3.99)]. However, it 
comes as no surprise that the integral in equation (3.103) is not convergent 
for ot -< "tr/3 (it is logarithmically UV divergent then). In other words, this 
approximation would be so crude as to not even deliver finite results. So in 
the parameter region ot -< ~/3, at least, one has to proceed differently. Without 
any problem we may always insert the value of ~oo) determined by the 
normalization conditions applied within the IR analysis. For/~(0) and in the 
low-s integration region of the integral we will insert a s, bg as given by 
equations (3.98), (3.99). In the large-s region ag, /~g will be taken from 
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equations (3.58), (3.59). One immediately recognizes that this is a better 
approximation because the integral in equation (3.103) then gives finite 
results. Now, of course, the practical question arises as to which intermediate 
value of the integration variable s in equation (3.103) should split the applica- 
tion regions of the IR and UV representations of  ag,/~g. Perhaps one could 
choose to fit together the IR and UV representations at some value of s to 
be determined by a certain condition. For the purpose of the present numerical 
calculation we select another way. The UV tail of the integrand M(s) in 
equation (3.103) will not contribute significantly and we therefore ignore it 
by simply cutting the integration over the IR representation of the integrand 
at some upper value s = sx. This value is determined as follows. Observe 
that the exact integrand M(s) in equation (3.103) is positive for s ~ ~. To 
see this, one may insert equations (3.58), (3.59) into (3.104) and one finds 
to leading order 

M(s) = 11 ~ + . . .  > O, s --~ ~ (3.107) 

On the other hand, one may easily convince oneself that for et -< at/3 the 
integrand M(s) of equation (3.103) becomes negative for s ---> oo if the low- 
s representations (3.98), (3.99) are inserted. One now detects that the integrand 
with the low-s representation inserted is positive for s = 0. Consequently, 
there exists a zero of the integrand taken in the IR representation (cf. Fig. 
6). Obviously, this zero determines the point beyond which the IR (low-s) 
representation starts to strongly misrepresent the true integrand and we there- 
fore choose this zero as the upper cutoff Sx of the numerical integration (see 
Fig. 7 for the dependence of Sx on ct). 29 It is clear that this recipe leads to 
a certain slightly lower value of the integral than if the UV region was 
not neglected. 

The result of  the numerical calculation of Cla(~) is shown in Fig. 8, 
while Fig. 9 displays the behavior of the two contributions from which 
Cl~(r derives [see equation (3.103)]. Unfortunately, within the approximation 
applied we do not find any zero of Cta(cx), but from Fig. 9 one recognizes 
that both contributions to be taken into account are indeed comparable numeri- 
cally. We believe that the contribution of the integral in equation (3.103) is 
underestimated within the approximation applied compared with the exact 
one, which relates to the exact solution of the integral equation (3.42). The 
contribution of  the first term in equation (3.103) is probably determined to 

29Another choice might be to fit the IR and UV representations of the integrand together at 
some sy < sx. Here, one way is to require continuity of the integrand at s = sy and to 
determine sy by extremizing the value of the integral. However, in doing so, one detects that 
the contribution of the UV tail is negligible numerically. 
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Fig. 6. Typical behavior of the integrand M(s) in equation (3.103) for small arguments, where 
equations (3.9g), (3.99) are inserted [M(s) is drawn here for a = 0.05]. The zero (we denote 
it by s~) of the function M(s) is understood as defining the applicability region of the Iow-s 
representation (3.98), (3.99). s~ as a function of et is shown in Fig. 7. 

a more reliable degree because only the boundary values of/~g(s) contribute 
to it. Furthermore, the smaller is a,  the more the approximation applied for 
the second term in equation (3.103) miscalculates it. This can easily be seen 
from Fig. 6 (and Fig. 7). The true integrand [with the exact solution of  
equation (3.42) inserted, which we do not know presently] would likely 
contribute more because we expect the integrand M(s) to be positive for large 
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Fig. 7. Zero sx of  M(s) as a function of  a (see Fig. 6). The dashed line is drawn at ar while 
the dotted line is located at ct --- 1.55. In both cases one finds numerically s .  --~ ~.  

s. This would shift curve 2 in Fig. 9 to larger values and consequently a zero 
of Cla(C0 might occur. 

In conclusion, the mechanism proposed has explicitly been shown capa- 
ble to allow the calculation of the QED coupling constant a to be attempted. 
However, the approximation applied turns out to be too simple to yet obtain 
any specific value of or. In particular, for small values of ct, where most of 
the approximations applied within the calculation given in the present section 
appear to be most justified, no zero of  Cla(CX) is found. However, it is clear 
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Fig. 8. The coefficient Cla [see equation (3.103)1 as a function ofet. The curve is the difference 
of  the contributions represented by curves 1 and 2 in Fig. 9 [curve 1 stands for the first term 
in equation (3.103), while curve 2 is the contribution of  the integral]. Note that C~a is a 
completely smooth function at et = e~ c (dashed line), although certain of  the parameters (see 
Figs. 3 and 5) are singular there. 
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Fig. 9. Contributions to Cto as functions of  ct. For a further explanation see Fig. 8. 

that more advanced approximations may lead to a different picture. This 
needs to be studied in the future. We postpone further discussion of this issue 
to the next section. 

4. DISCUSSION AND CONCLUSIONS 

Before turning to some matters of principle, let us further discuss the 
approximative approach to the functional integral equation for the complete 
effective action of QED. We have seen that the general approximative 
approach chosen (Section 3.2) allows certain nonperturbative information 



332 Scharnhorst 

about the quadratic kernels of the QED action to be obtained. The fact that 
the information found indicates that there exists only a unique solution to 
the functional integral equation (at least within the approximative approach 
studied) deserves particular emphasis. Of course, this point has to be studied 
further using more advanced approximations in order to see whether for the 
QED coupling constant ~t only one admissible value exists (if any at all--but 
nature appears to allow for some). Furthermore, within the approximative 
approach divergences as they are characteristic for standard QED do not 
show up (at least, as far as the present study runs). It should perhaps also be 
said that the nonlocal character of the fermion action allows nonperturbative 
techniques to be employed which are not quickly applicable in standard QED. 
For example, as we have seen, the well-known Bloch-Nordsieck contribution 
can be obtained easily and it contains important IR (long-distance) information 
crucial to the further calculation. The present approach comes closest to 
standard QED for etc - 0.70 because at this point the fermion form factors 
a, b become delta functions for all practical purposes, the parameter 13 van- 
ishes, and only a finite photon wave function renormalization applies. In a 
certain sense, viewed from standard QED, it can be regarded for general ot 
as a nonlocal regularization which is lifted when ~t ~ 0.70 (in standard 
quantum field theory language ot c corresponds to a fixed point of the renormal- 
ization group). 

However, so far the concept proposed in the present article has not yet 
successfully passed the crucial test attempted in Section 3.3.3, namely the 
approximate calculation of the QED coupling constant ct. As we have seen, 
the approach used is indeed suited for explicit calculation, but inasmuch as 
within the simple approximation applied we did not find any zero of Cla(Ot), 
the question remains open. What might a better approximation look like? 
First, it should be noted that by imposing equation (3.75) independently of 
the value of or, a strong coupling condition has been enforced which annihilates 
the hope that higher loop contributions can really be neglected in the integral 
equation for the quadratic kernel of the fermion action (3.42). However, to 
take into account higher loop contributions would add complications to the 
formalism not easily resolved in analytical calculations. One way out of 
this dilemma might be to relax for approximation purposes the fixed-point 
condition for the quadratic kernel of the fermion action to aH=  Cal, bn = 
Cbl, where C is some arbitrary real constant, instead of immediately enforcing 
C -- 1. This requirement of structural similarity perhaps could be sufficient 
to keep the conceptual content alive and at the same time count indeed in 
any argument on the eventual smallness of ot [the point is that then one would 
not need to enforce equation (3.75)]. The parameter 13 then would also be 
unconstrained as long as the fixed-point condition d~l = dl is not enforced. 
To finally fix both ct and the parameter 13 the conditions (3.23), (3.24) 



Functional Integral Equation for Complete Effective Action 333 

can be applied simultaneously. Whether this recipe yields a more effective 
approximation remains to be seen in future investigations. It might perhaps 
also be necessary to include some higher loop contributions to Cla and C2~. 
Certainly, the solution of the integral equation for the kernel of the fermion 
action (3.42) has to be studied further. Maybe it will also be advisable to 
improve the Ansatz (3.21). These are some of the changes in the approxima- 
tion strategy which can be implemented most easily along the lines of Section 
3. Perhaps still more severe changes are required. Finally, it should be said 
that the calculation discussed in Section 3 should merely be understood as 
a first (naive) attempt to extract information out of the functional integral 
equation for the complete effective action by means of a simple approxima- 
tion, which, however, allows mostly analytical investigation. It is clear, of 
course, that the present understanding is poor and much remains to be learned. 

Let us turn now to the consideration of the vacuum energy problem 
within the present approach. It will not be aimed at the most general theoretical 
setup eventually possible, which very likely would turn out to be fruitless, 
but we restrict consideration to QED and in particular to the approximative 
approach to it studied in Section 3. It might be hoped that this special case 
yields certain new insight into the problem, useful at least for gauge field 
theories in general. In standard QED in 4D Minkowski space the vacuum 
energy density originating from fermion as well as from photon fluctuations 
and their interactions is a divergent quantity, but it is considered unimportant 
because it can either be removed by applying normal ordering (in operator 
quantization) or by appropriately normalizing the functional integral defining 
the theory. No physical quantity depends on it. However, it is also known 
that modifications of the vacuum energy density as occurring when external 
conditions are applied (boundary conditions, temperature, external fields) do 
matter and in certain cases consequences are even observable in experiment 
(e.g., the Casimir effect) (Plunien et  al., 1986; Grib et  al., 1988; Kapusta, 
1989; Mostepanenko and Trunov, 1990). Some changes of the vacuum energy 
density turn out to be finite immediately (e.g., the Casimir energy density, 
or the free energy density for QED at finite temperature). Others require 
renormalization, like the QED effective potential for (say) a constant magnetic 
field. Even more care is needed in the study of QED in a gravitational 
background field, which we will turn to in a moment. However, a large part 
of the motivation for studying the vacuum energy density derives from this 
situation because it gives rise to the concept of induced (classical) gravity 
(Sakharov, 1967) understood as some kind of gravitational (metric) Casimir 
effect [for a review and further references see Adler (1982) and Novozhilov 
and Vassilevich (1991); also note David (1984) and David and Strominger 
(1984)]. 
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First, let us compare the calculation of the vacuum energy density in 
standard QED and within the present approach whereby we restrict consider- 
ation to the one-loop level. The vacuum energy density Pvac is given within 
cutoff regularization by [cf. Appendix B, equation (B.7)] 

F.[0, 0, 0] 

= -- VaPva c 

114 m4 ds s ln[sal(s) 2 +/~l(s) 21 - ~ ln[sttl(s) 3/21 = const + ~ Jo 

(4.1) 

One immediately recognizes the well-known fact that in standard QED (a~ 
= /~ = dl -- 1) the vacuum energy density Pv~ diverges. Now, QED in a 
background field (electromagnetic or gravitational; we restrict consideration 
to these external conditions that are most interesting in view of standard 
QED difficulties) will change the quantity s (stemming from differential 
operators in configuration space) appearing in the argument of the logarithms 
above to some s + As, where for large s the change As behaves like As s-~ 
const. 3~ Of course, as already mentioned, one can always absorb the divergent 
terms characteristic for 4D Minkowski space displayed on the r.h.s, of equation 
(4.1) into the normalization constant of the functional integral. However, for 
QED in a background field the logarithm in the integrand of equation (4.1) 
then reads for large s 

In 1 + . . . .  As + = ln[1 "1- O(S--I)] ~--" O(S - I )  (4.2) 
S 

and the vacuum energy density depending on the background field is still 
divergent (this even holds up to As ~ lls). 

Now, compare this with our approximative approach to the equation for 
the complete effective action of QED. From equations (3.58), (3.59) we 
know that 

sat(s)2 + /~,(s)2 = /~(~)2 1 - -~  + "'" (4.3) 

Absorbing a In/~(~) term into the normalization constant of the functional 
integral, we see that the part of the vacuum energy density originating from 
fermion fluctuations [the first term in the integrand of equation (4.1)] is even 
finite without any further appeal to this constant. As we have explained in 

3~ a connection in the covariant derivatives, this naively yields As ~-2 ~ x/~, but 
symmetry reasons finally lead to the somewhat weaker behavior As ~--~ const. 
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Section 3.3.2, this is true irrespective of the particular approximation applied 
(i.e., whether we first perform the gauge field integration or the fermionic 
integration). Consequently, any change of the fermionic part of the vacuum 
energy density under the influence of external (electromagnetic as well as 
gravitational) fields will also be finite. However, in view of condition (3.20), 
the part of the vacuum energy density originating from photon fluctuations 
[the second term in the integrand of equation (4.1)] is still divergent and the 
behavior of the gauge field determinant in the presence of a gravitational 
background field is of equal concern as in standard QED [in particular, the 
gauge field conformal anomaly and its regularization dependence (Birrell 
and Davies, 1982)]. It remains to be seen whether any still further modified 
approach can be found which improves the situation in the gauge field sector 
to the same extent as this seems to be the case in the fermion sector. 

The above consideration now allows comparison of standard QED in a 
gravitational background field and the present approach. In standard QED 
the structure of the first few terms of the effective gravitational action [i.e., 
up to a minus sign, the (time-integrated) vacuum energy] is known (Birrell 
and Davies, 1982; Grib et al., 1988; Fulling, 1989), 

rii[0, 0, 0] = I d4x "f-~{m4cl + m2c2R + c3IqR + c4R2 

+ csR~R ~v + c 6 R ~ R  ~ + ---} (4.4) 

cl to c6 are certain divergent dimensionless constants. We have already 
discussed cl (i.e., -Pva~ for 4D Minkowski space); c2 is a quadratically (in 
the cutoff A) divergent quantity; while c3 to c6 diverge logarithmically. All 
further terms are finite. Consistency requires that we start in the standard 
QED functional integral with a certain bare gravitational action (included in 
F0 containing all terms displayed in equation (4.4) in order to be able to 
absorb the divergences into the bare constants in front of them. Consequently, 
induced gravity is not a consistent concept within standard QED. In contrast 
to standard QED, by taking into account the UV behavior of the quadratic 
kernel of the fermion action (a consequence of the equation for the complete 
effective action of QED), we have demonstrated above that whatever the 
technical approach to calculate c2 to c6 will be in detail, 31 these coefficients 
will come out finite (at least at the one-loop level). However, the contribution 
from the determinant of the gauge field kernel remains a problem. Irrespective 
of this, viewed from the fermionic sector, within the present framework 
induced gravity might have a better chance of turning out to be a valid 

31in cutoff regularization they will have representations analogous to equations (2.7)-(2.9) in 
Scharnhorst (1995). 
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concept. Of course, as pointed out by Sakharov (1967) in his pioneering 
paper, the (induced) gravitational action will very likely not be dominated 
by contributions stemming from QED, but from the heaviest excitations 
(particles) existent in nature. If one would like to attempt the calculation of 
the induced gravitational action within the concept proposed in the present 
paper, one would first have to study the equation for the complete effective 
action of the standard model at least. If one is willing to do so, this will 
require much effort and certainly results cannot be obtained quickly. However, 
in view of the possible outcome perhaps it might be worthwhile. 

Throughout the paper we have preliminarily applied the standard point 
of view that the space-time structure is prescribed to the functional integral 
equation for the complete effective action. In a certain sense it is considered 
as 'classical' and as prior to quantum effects (at least for fiat space-time). 
However, the criticism spelled out in Section 2 with respect to the artificial 
distinction between classical action and effective action also applies to this 
view on the space-time structure. Therefore, the structure of space-time should 
be more adequately understood as some characteristics of the quantum field- 
theoretic vacuum. Basically, this is the point of view applied within the 
concept of induced gravity, although this aspect is hardly discussed in the 
literature. However, in flat space-time the idea also applies. Recent investiga- 
tions of the propagation of light in a Casimir vacuum indicate that this concept 
is already implicit in standard QED (Scharnhorst, 1990; Barton, 1990; Barton 
and Schamhorst, 1993). As discussed in Barton and Scharnhorst (1993), 
although the lack of appropriate nonperturbative calculational tools leaves 
the question so far unsettled in the strict sense, the only conceptually viable 
(as far as present knowledge is concerned) of the alternatives allowed by the 
Kramers-Kronig relation for the refractive index n(to) of the Casimir vacuum 
(to is the frequency of the test wave) is that n(oo) < I holds for the propagation 
of light perpendicular to two parallel mirrors in the slab between them [this 
entails a signal (front) velocity of light larger than in the unbounded space 
vacuum]. While this result is often viewed as something like a paradox in 
standard QED, it is easily understandable by means of the concept put forward 
in the present article (where it may count as a special application). If the 
mapf i s  modified in such a way that it is no longer fully Lorentz invariant, 32 
then the solution of the functional integral equation for the complete effective 
action is also no longer fully Lorentz invariant and the dispersion analysis 
in accordance with the effective Maxwell action may well reveal a change 
in the signal velocity of light. The point is that only one situation can be 
considered as the one where normalization is performed (and we typically 

32For an appropriate functional integral formulation of standard QED in the presence of two 
parallel mirrors see Bordag et  al. (1985). 
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choose free Minkowski space as the reference situation and the signal velocity 
of light there as the reference standard, although of course any less symmetri- 
cal setup could also be used). However, in view of the discussion in Section 
2, it makes no sense to consider any normalized value of a certain quantity 
(e.g., mass, charge, velocity of light) as classical, because this is a concept 
not accessible to experiment. We can only denote certain values defined by 
a certain measurement scenario under defined circumstances as reference 
values. Any changes of these values measured under different circumstances 
are certainly of a quantum nature, but equally well these values could have 
served as initial reference values. Consequently, it appears most sensible to 
consider these quantities from the very beginning as characteristics of the 
quantum field-theoretic vacuum and their changes as parametrizing changes 
of it with respect to some reference situation. 

Summarizing the concept proposed in the present article, let us point 
out that it proposes a view of quantum field theory which differs from 
the established one, but the established standard paradigm finds it natural 
explanation and place within this new approach. In particular, it incorporates 
and continues in modified shape certain ideas used in local renormalizable 
quantum field theory, such as the unobservability of bare quantities and the 
hypothesis that the vanishing of the beta function(s) (corresponding to a fixed 
point of the renormalization group) defines the physical coupling constant(s) 
of a model. The functional integral equation for the complete effective action 
proposed ensures (merely by definition) that any of its solutions is finite 
(otherwise it is not a solution). This removes to a certain extent the concern 
of divergences that standard quantum field theory is beset by, but the price 
to pay for this is the present uncertainty of whether the functional integral 
equation proposed has any other nonla-ivial solution beyond free field theories 
[i.e., any nonlinear (interacting) field theory]. The most natural place to find 
out whether the proposed concept is physically correct should be QED, 
because unlike some other model theories, it is a theory of phenomena 
definitely present in nature. QED is certainly structurally more complex than, 
say, scalar model field theories, but if for QED something new can be 
learned, we may feel sure that our physical understanding has advanced. The 
approximative approach to the functional integral equation for the QED 
effective action presented has proved its calculational accessibility. Although 
the particular approximation studied is still quite simple, it has yielded certain 
nonperturbative information which indicates that the present approach also 
has certain calculational advantages. However, only further investigation will 
show whether any obviously appropriate approximation can be found which 
yields the correct value of the fine structure constant with reasonable calcula- 
tional effort. In a certain sense this should be viewed as a crucial test because 
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in principle the present approach should be able to pass it, if it is really 
physically correct and adequate. 

A P P E N D I X  A 

In this appendix we explicitly calculate the function 

[ i f d4y d4y' 2~,(x, x' ; y)D~(y, ' )J~(x, x", y') ] g(x - x ')  = exp - ~  

for the Ansatz (3.21), 

(4) dl(X) = [1-k 13m2]~ (x) 

Equation (A.1) can easily be rewritten a s  33 

[ J0 ] g(x - x ' )  = exp -ie2(x - x') 2 d'r (1 - "r)Di((x - x 'yr)  

X exp{ie2(1 - k)[D~(x - x ' )  - D~(O)]} 

where 34 

(A.1) 

and 

(A.2) 

(A.3) 

33Of course, this transformation is not specific to the Ansatz (A.2). To obtain equation (A.3), 
a gauge-fixing term Fe, t with ri~ = ip~. all(p) ~n has been added to the gauge field action 
r~. 

34The IR divergence canbe regularized and then drops out for g(x). The spurious pole generated 
by the model Ansatz di(p) is understood as also supplied with the ie prescription. 

Dr(x) = oD~'(x) (A.5) 

For  simplicity, let us perform the calculation for g in Euclidean space. Results 
then can be read off  for Minkowski  space whenever  needed by rotating back 
the fourth coordinate. In Euclidean space Di ~ and Dt read 

i ln(la2~E)_ 13 D~'(XE) = 1 6-w 2 ~-~ DI(XE) (A.6) 

(Ix 2 is the temporary IR cutoff  applied) and 

f p2 d4p e ipx l dI(P) = 1 - 13 ~-~ (A.4) 
D~'(x) = (2~)4 (p2 + ie)2 d r (p ) '  
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i im . [mlxEl~ 
DI(XE)- 4ar2X2 E 4ar2V" ~" IXEI _ /~1 / - -~ )  (A.7) 

For the further calculation the following integral turns out to be useful (L~ 
are Struve functions) (Prudnikov et al., 1990-1992, Vol. 2): 

f dr K~(r) -Kffr) ~Ko(r) ar 
= - - ~ "r[Kl(a')Lo(a') + Ko('r)L,('r)] 

(A.8) 

Consequently, we find (~/is the Euler constant) 

-x~  d'r (1 - "r)Dl(XE'r) 

im { 1,  /m2~n~ - ~ .  l + ' + ~ ' n / - ~ -  ) 

m2x2z~. [mlXEI~ mlXEI . [mlxnl~ ar m2~ 

+ ' -  ~ J"~ N "'/--~--) ~ 
F [mlx~l\ [mlx~l\ . [mlx~tL [mtx~l~]l 

x LK, I - -~-- )Lo~--- -~-- )+ t C o / - - - ~ ) L t / - - ~ J ] ~  (A.9, 

The final result for g(XE) is then (t = mlXEI/.f~) 

g(XE) = exp 1 + ~/ + ~ l n ~  + (1 -- F')Ko(t) - tKl(t) 

- ar F[Kl(t)Lo(t) + Ko(t)Lfft)]'~ 
2 J 

+ ~ ( 1  _ h ) [ l  1 1 1 ~ ] )  ar -~ - t K , ( t )  + -~ (2~/ - 1) + ~ In (A.10) 

In the long-distance limit (t > >  1) equation (A.10) reads 

g(Xn) = exp --art + 2 4 2 

(A.11) 

So in the long-distance region in which we are mainly interested the function 
g(XE) can be written as 
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(~ ) Cg = (413) -~'~ exp ~ [(3 + h) + 2(3 - h )~ / ]  (A.13) 

One easily recognizes in equation (A.12) the well-known exponent of the 
(power-like) Bloch-Nordsieck contribution (Kernemann and Stefanis, 1989; 
Karanikas et  al.,  1992; and references therein). 

APPENDIX B 

In this appendix we derive an expression for the vacuum energy density 
on the one-loop level for the version of nonlocal QED given by equations 
(3.12)-(3.14). We apply the simplest regularization possible, namely cutoff 
regularization [with a (radial) momentum space UV cutoff at A], which is 
most suited for our purposes. The vacuum energy density Pvac is given by 

FII[0, 0, 0] -- -V4Pvac 

i 
= const - i In DetA(Si -I) -- i In DetA(D~-hll) + ~ In DetA(D~v) 

(B.I) 

Here 

S i l ( x  - x ' )  = i itxal(x - x ' )  - mbi (x  - x ' )  

D ~ i ( x  - x ' )  = -~h xOt'n~(x - x ' )  

(B.2) 

(B.3) 

! f 
D~,~(x  - x ' )  = [g~,, xD -xO~.  xO,,] d|(x  - x ' )  - ~ I d4y  n v ( y  - x)nl , (y  - x ' )  

(B.4) 

are the quadratic kernels of the fermion, ghost (contributing in QED to the 
vacuum energy only), and gauge field actions, respectively, nr here can be 
any vector-valued distribution, for example, perhaps a derivative 0 F acting 
on some scalar function leading to a Lorentz-type gauge, or any constant 
vector times a scalar function yielding an axial type gauge. From equation 
(B. 1) we find 

IA d4p Fu[0, 0, 0] = const - 2iV4 ~ ln[-p2til(p) 2 + m2/~l(p) 2] 

d 4 
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i IA d4p ln{det[(g~P2 - Pr di(p) - h-lri~(p)ri~(p)]} 

(B.5) 

Taking into account the relation 

33 
d e t [ ( g ~ p  2 - p~p~)a - h-la~a~] = - ~  [pa]2[p2] 2 (B.6) 

and applying a Wick rotation, one finds after some manipulations [we have 
absorbed certain In m terms into the first (normalization) constant on the 
r.h.s, of equation (B.5)] 

= ds s ln[sal(s) 2 +/~i(s)21 - ~ ln[sdl(s) 3/2] Fn[0, 0, 01 const + ~ m J0 

(B.7) 

There is no trace left of the gauge condition because we have correctly 
included in the kernel of the ghost action (B.3) the gauge parameter h [for 
a related discussion see Allen and Ottewill (1992) and Nielsen and van 
Nieuwenhuizen (1988)1. 
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